逆转一个整数的二进制表示问题

写一个函数逆转整数的二进制表示 unsigned ReverseBit(unsigned x);
unsigned x = RevBit(0xf0ec9999);
x应该为 0x9999370f。
0xf0ec9999 == 11110000111011001001100110011001(二进制)

0x9999370f == 10011001100110010011011100001111(二进制)


解法一直接做:

[cpp]  view plain  copy
 print ?
  1. #define UNSIGNED_BITS_COUNT 32  
  2. unsigned int ReverseBit(unsigned int input)   
  3. {   
  4.     unsigned int ret, i;   
  5.     for(ret = i = 0; i < UNSIGNED_BITS_COUNT; i++, input = input >> 1)   
  6.       ret = (ret << 1) | (input & 1);   
  7.     return ret;   
  8. }  

解法二:
思路:相邻两位互调位置(即一位换一位),再相邻的两位换两位,在相邻的四位与四位互调位置,再八位与八位互调位置,最后前十六位和后十六位互换位置,完成32位整数逆转。

[cpp]  view plain  copy
 print ?
  1. unsigned int ReverseBit(unsigned int x)  
  2. {  
  3.   x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa);  
  4.   x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc);  
  5.   x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0);  
  6.   x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00);  
  7.   x = ((x >> 16) & 0x0000ffff) | ((x << 16) & 0xffff0000);  
  8.   
  9.   return x;  
  10. }  

第一行代码为奇偶位相互交换;第二行为以两位为一单元,奇偶单元进行交换;第三行为以四位为一单元,奇偶单元进行交换;第四行为以八位为一单元,奇偶单元进行交换;最后一行为以十六位为一单元,奇偶单元进行交换。至此,32位反转完成,算法结束。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值