自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

知之可否

Be yourself; everyone else is already taken.​

原创 java-正则表达式

1.一般流程 Pattern p = Pattern.compile("a*b"); Matcher m = p.matcher("aaaaab"); boolean b = m.matches();或boolean b = Pattern.matches("a*b", "aaaaab");boolean b = "aaaaab".matches("a*b");第一种,当需要匹配多个字符串时,效

2017-05-12 21:22:30 692

转载 Java输入输出流

转载自 http://blog.csdn.net/hguisu/article/details/74181612.数据流的基本概念4 数据流分类:流序列中的数据既可以是未经加工的原始二进制数据,也可以是经一定编码处理后符合某种格式规定的特定数据。因此Java中的流分为两种: 1)  字节流:数据流中最小的数据单元是字节 2)  字符流:数据流中最小的数据单元是字符, J

2017-05-10 12:10:04 568

转载 Java8-Stream语法详解

转载自 http://ifeve.com/stream/#header1. Stream初体验我们先来看看Java里面是怎么定义Stream的:A sequence of elements supporting sequential and parallel aggregate operations.我们来解读一下上面的那句话:Stream是元素

2017-05-05 16:30:18 539

原创 JAVA8-用lamda表达式和增强版Comparator进行排序

以前的排序一般对象实现Comparable或者Comparator接口,经常是通过匿名类类实现。 可以参见以前的博文 Java 中 Comparable 和 Comparator 比较 现在看看使用lamda表达式和java8中增强的Comparator接口进行排序。先定义一个简单的实体类:class Human { private String name; private in

2017-05-03 16:58:25 17386

转载 java的动态代理机制详解

转自 http://www.cnblogs.com/xiaoluo501395377/p/3383130.html在学习Spring的时候,我们知道Spring主要有两大思想,一个是IoC,另一个就是AOP,对于IoC,依赖注入就不用多说了,而对于Spring的核心AOP来说,我们不但要知道怎么通过AOP来满足的我们的功能,我们更需要学习的是其底层是怎么样的一个原理,而AOP的

2017-04-29 18:30:43 626

原创 java 中的Stack、Queue、Deque

1.Stackjava集合框架中没有Stack接口,仅仅有java早期遗留下来的一个Stack类。Java.util.Stackpublic Stack extends Vector因为集成自Vector,所以Stack类是同步的,效率不高。官方一般建议这样使用ArrayDeque代替StackDeque stack = new ArrayDeque();2.Queue

2017-04-28 15:57:53 4563

原创 java中集合中删除特定元素

总结有三种方式:import java.util.ArrayList;import java.util.List;public class Main{ public static void main(String[] args) { List list=new ArrayList(); list.add("1"); list.add("2"); list.add("3"

2017-04-27 12:21:01 506

转载 java中的java.lang.Class对象

Java程序在运行时,Java运行时系统一直对所有的对象进行所谓的运行时类型标识。这项信息纪录了每个对象所属的类。虚拟机通常使用运行时类型信息选准正确方法去执行,用来保存这些类型信息的类是Class类。Class类封装一个对象和接口运行时的状态,当装载类时,Class类型的对象自动创建。      Class 没有公共构造方法。Class 对象是在加载类时由 Java 虚拟机以及通过调用类加载

2017-04-26 17:36:42 882

转载 java 泛型

一 泛型是什么泛型最精准的定义:参数化类型。具体点说就是处理的数据类型不是固定的,而是可以作为参数传入。定义泛型类、泛型接口、泛型方法,这样,同一套代码,可以用于多种数据类型。二 泛型类和泛型方法2.1 泛型类和接口泛型类和接口类似,定义一个泛型类:public class SomT> { private T value; public T getValu

2017-04-26 16:12:11 494

原创 java 中类的加载顺序

JAVA类首次装入时,会对静态成员变量或方法进行一次初始化,但方法不被调用是不会执行的;静态成员变量和静态初始化块级别相同,非静态成员变量和非静态初始化块级别相同。先初始化父类的静态代码--->初始化子类的静态代码-->初始化父类的非静态代码--->初始化父类构造函数--->初始化子类非静态代码--->初始化子类构造函数看一段代码package test;

2017-04-20 15:48:51 418

转载 Java 中 Comparable 和 Comparator 比较

转载自  http://www.cnblogs.com/skywang12345/p/3324788.html本文,先介绍Comparable 和Comparator两个接口,以及它们的差异;接着,通过示例,对它们的使用方法进行说明。 Comparable 简介Comparable 是排序接口。若一个类实现了Comparable接口,就意味着

2017-04-17 16:00:59 841

转载 谱聚类算法详解

转自  http://blog.csdn.net/jteng/article/details/49590069 谱聚类(Spectral Clustering)算法简单易行,其聚类性能优于传统的K-means算法。谱聚类将数据的划分转化为对图的分割,是一种基于图论的聚类方法,其直观理解为根据图内点的相似度将图分为多个子图,使子图内部的点相似度最高,子图之间点的相似度最低。

2017-03-20 10:12:54 838

转载 Java Thread(线程)案例详解sleep和wait的区别

转自  http://www.cnblogs.com/DreamSea/archive/2012/01/16/2263844.htmlF区别sleep()方法  sleep()使当前线程进入停滞状态(阻塞当前线程),让出CUP的使用、目的是不让当前线程独自霸占该进程所获的CPU资源,以留一定时间给其他线程执行的机会;   sleep()是

2017-03-16 10:36:40 489

转载 Java中Synchronized的用法

转自  http://blog.csdn.net/luoweifu/article/details/46613015#commentssynchronized是Java中的关键字,是一种同步锁。它修饰的对象有以下几种: 1. 修饰一个代码块,被修饰的代码块称为同步语句块,其作用的范围是大括号{}括起来的代码,作用的对象是调用这个代码块的对象; 2. 修饰一个方法,被修饰的方

2017-03-16 10:07:56 275

转载 MapReduce实现矩阵乘法

转自  http://blog.csdn.net/liuxinghao/article/details/39958957简单回顾一下矩阵乘法:矩阵乘法要求左矩阵的列数与右矩阵的行数相等,m×n的矩阵A,与n×p的矩阵B相乘,结果为m×p的矩阵C。详细内容可以查看:矩阵乘法。为了方便描述,先进行假设:矩阵A的行数为m,列数为n,aij为矩阵A第i行

2017-03-15 20:42:05 927

转载 HashMap Hashtable区别

http://blog.csdn.net/java2000_net/archive/2008/06/05/2512510.aspx  我们先看2个类的定义[java] view plain copypublic class Hashtable      extends Dictionary      implements Map,

2017-03-15 09:58:57 383

转载 「 Hadoop」mapreduce对温度数据进行自定义排序、分组、分区等

转自  http://www.ptbird.cn/mapreduce-tempreture.html一、需求说明1、数据文件说明hdfs中有一些存储温度的数据文件,以文本形式存储,示例如下:日期和时间中间是空格,为整体,表示检测站点监测的时间,后面是检测的温度,中间通过制表符 \t 相隔。2、需求计算在1949-1955年中,

2017-03-14 11:03:15 3268

转载 Hive中 Oder by 、sort by、distribute by 和 cluster by

参见 https://www.iteblog.com/archives/1534.html

2017-03-14 09:41:20 355

转载 XGBoost浅入浅出

转自 http://wepon.me/2016/05/07/XGBoost%E6%B5%85%E5%85%A5%E6%B5%85%E5%87%BA/XGBoost风靡Kaggle、天池、DataCastle、Kesci等国内外数据竞赛平台,是比赛夺冠的必备大杀器。我在之前参加过的一些比赛中,着实领略了其威力,也取得不少好成绩。如果把数据竞赛比作金庸笔下的武林,那么XGBoost

2017-03-13 22:36:56 2083

转载 Hive group by distinct性能调优

转自 http://sjq597.github.io/2016/04/24/Hive-group-by-distinct%E6%80%A7%E8%83%BD%E8%B0%83%E4%BC%98/Hive去重统计相信使用Hive的人平时会经常用到去重统计之类的吧,但是好像平时很少关注这个去重的性能问题,但是当一个表的数据量非常大的时候,会发现一个简单的count(distinct order

2017-03-13 17:26:03 1394

转载 梯度下降法的三种形式BGD、SGD以及MBGD

转自 http://www.cnblogs.com/maybe2030/p/5089753.html#top阅读目录1. 批量梯度下降法BGD2. 随机梯度下降法SGD3. 小批量梯度下降法MBGD4. 总结  在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点

2017-03-13 16:31:49 427

转载 LR与SVM的异同

转自 http://www.cnblogs.com/zhizhan/p/5038747.html在大大小小的面试过程中,多次被问及这个问题:“请说一下逻辑回归(LR)和支持向量机(SVM)之间的相同点和不同点”。第一次被问到这个问题的时候,含含糊糊地说了一些,大多不在点子上,后来被问得多了,慢慢也就理解得更清楚了,所以现在整理一下,希望对以后面试机器学习方向的同学有所帮助(至少

2017-03-13 16:12:36 997

转载 svm常用核函数

转自 http://blog.csdn.net/batuwuhanpei/article/details/52354822SVM核函数的选择对于其性能的表现有至关重要的作用,尤其是针对那些线性不可分的数据,因此核函数的选择在SVM算法中就显得至关重要。对于核技巧我们知道,其目的是希望通过将输入空间内线性不可分的数据映射到一个高纬的特征空间内使得数据在特征空间内是可分的,我们定义这种映射为ϕ

2017-03-12 12:22:02 1254

转载 SVM多类分类方法

http://blog.sina.com.cn/s/blog_5eef0840010147pa.htmlSVM多类分类方法的实现根据其指导思想大致有两种:(1)将多类问题分解为一系列SVM可直接求解的两类问题,基于这一系列SVM求解结果得出最终判别结果。(2)通过对前面所述支持向量分类机中的原始最优化问题的适当改变,使得它能同时计算出所有多类分类决策函数,从而“一次性”

2017-03-12 11:46:00 428

转载 为什么一些机器学习模型需要对数据进行归一化?

http://www.cnblogs.com/LBSer/p/4440590.html    机器学习模型被互联网行业广泛应用,如排序(参见:排序学习实践)、推荐、反作弊、定位(参见:基于朴素贝叶斯的定位算法)等。一般做机器学习应用的时候大部分时间是花费在特征处理上,其中很关键的一步就是对特征数据进行归一化,为什么要归一化呢?很多同学并未搞清楚,维基百科给出的解释:1)归一化后加快了梯度下

2017-03-12 11:36:01 812

转载 svm 问题整理

1、为什么要选择最大间隔分类器,请从数学角度上说明?    答:几何间隔与样本的误分次数间存在关系:        其中的分母就是样本到分类间隔距离,分子中的R是所有样本中的最长向量值2、样本失衡会对SVM的结果产生影响吗?    答:会,超平面会靠近样本少的类别。因为使用的是软间隔分类,而如果对所有类别都是使用同样的惩罚系数,        则由于

2017-03-11 22:41:21 2872

转载 数据库范式那些事

http://www.cnblogs.com/CareySon/archive/2010/02/16/1668803.html简介      数据库范式在数据库设计中的地位一直很暧昧,教科书中对于数据库范式倒是都给出了学术性的定义,但实际应用中范式的应用却不甚乐观,这篇文章会用简单的语言和一个简单的数据库DEMO将一个不符合范式的数据库一步步从第一范式实现到第四范式。

2017-03-10 15:30:31 186

转载 LDA数学原理及优缺点

线性判别分析(Linear Discriminant Analysis,LDA),也称线性判别法,是由Fisher于1936年提出。基本思想和原理:通常是指在输入变量上构造线性判别函数的方法,但是它也可以寻求一种变换,使得在某种意义下类间分离性最大,类内分离性最小或相异性最小。原理:将高维的模式样本投影到最佳鉴别矢量空间,以达到抽取分类信息和压缩特征空间维数的效果,

2017-03-09 17:09:06 6046

转载 SpringMVC工作原理

转自 http://blog.csdn.net/liang5630/article/details/43733733#commentsSpringMVC框架介绍    1) Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面。Spring 框架提供了构建 Web 应用程序的全功能 MVC 模块。使用 Sprin

2017-03-09 15:29:29 340

转载 GBDT(MART) 迭代决策树入门教程 | 简介

转自 http://blog.csdn.net/w28971023/article/details/8240756#comments在网上看到一篇对从代码层面理解gbdt比较好的文章,转载记录一下:              GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regre

2017-03-07 20:25:31 252

转载 [Machine Learning & Algorithm] 随机森林(Random Forest)

转自 http://www.cnblogs.com/maybe2030/p/4585705.html#top阅读目录1 什么是随机森林?2 随机森林的特点3 随机森林的相关基础知识4 随机森林的生成5 袋外错误率(oob error)6 随机森林工作原理解释的一个简单例子7 随机森林的Python实现8 参考内容回到顶部

2017-03-07 19:30:46 367

转载 从零开始学JDBC--1.9 代码抽取--使用Properties读取配置文件

为了更灵活的对项目进行配置,我们采用db.properties文件将配置信息存储起来,然后用Properties类去读取,代码如下: Properties props = new Properties(); FileInputStream in = new FileInputStream("./src/db.properties"); props.load(in);

2017-02-22 17:20:37 347

转载 MapReduce:详解Shuffle过程

/** * author : 冶秀刚 * mail     : dennyy99@gmail.com */         Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方。要想理解MapReduce, Shuffle是必须要了解的。我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混。前段时间在做MapReduce job

2017-02-20 14:43:22 412

转载 所涉及到的几种 sklearn 的二值化编码函数:OneHotEncoder(), LabelEncoder(), LabelBinarizer(), MultiLabelBinarizer()

转自http://blog.csdn.net/haramshen/article/details/53169963所涉及到的几种 sklearn 的二值化编码函数:OneHotEncoder(), LabelEncoder(), LabelBinarizer(), MultiLabelBinarizer()1.代码块import pandas as pdfrom sklear

2017-02-14 11:43:25 9987 1

转载 String类的split()方法与StringTokenizer方法对字符串分割并输出内容的性能比较

由于需要处理大量的文本文件,并对文件中的内容进行逐行字符串分割。涉及到split()和StringTokenizer两种方法,所以对二者的性能进行了一下比较。    选取了一个1.58M大小的CSV文件,其中有4420行的数据,做的处理是分别用两种方法读取文件,并逐行进行分割,然后再将每行的内容输出。分别测试两种方法的耗时。    对每种方法都执行了五遍,取其耗时的平均值进行比较,共做了两

2017-02-13 11:07:22 567

转载 使用Dom4j解析XML

转自     http://blog.csdn.net/redarmy_chen/article/details/12969219  dom4j是一个Java的XML API,类似于jdom,用来读写XML文件的。dom4j是一个非常非常优秀的Java XML API,具有性能优异、功能强大和极端易用使用的特点,同时它也是一个开放源代码的软件,可以在SourceForge上找到它.

2017-02-07 17:40:21 383

转载 关于Class.getResource和ClassLoader.getResource的路径问题

Java中取资源时,经常用到Class.getResource和ClassLoader.getResource,这里来看看他们在取资源文件时候的路径问题。Class.getResource(String path)path不以’/'开头时,默认是从此类所在的包下取资源;path 以’/'开头时,则是从ClassPath根下获取;什么意思呢?看下面这段代码的输出结果就

2017-02-07 17:32:04 218

转载 时间序列分析之ARIMA模型预测__R篇

转自http://www.cnblogs.com/bicoffee/p/3838049.html之前一直用SAS做ARIMA模型预测,今天尝试用了一下R,发现灵活度更高,结果输出也更直观。现在记录一下如何用R分析ARIMA模型。 1. 处理数据1.1. 导入forecast包forecast包是一个封装的ARIMA统计软件包,在默认情况下,R没有预装fore

2017-01-20 10:24:19 12702 2

转载 Arima预测模型(R语言)

转自 http://blog.csdn.net/desilting/article/details/39013825#commentsARIMA(p,d,q)模型全称为差分自回归移动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),AR是自回归, p为自回归项; MA为移动平均,q为移动平均项数,d为时

2017-01-19 11:01:18 3598

原创 利用HttpClient 发送Patch请求,携带Json参数

HttpClient 中没有HttpPatch类,可以继承HttpPut来实现import org.apache.http.client.methods.HttpPut;public class HttpPatch extends HttpPut{ public HttpPatch(String url) { super(url); } @Override public Str

2017-01-16 16:40:21 7888

提示
确定要删除当前文章?
取消 删除