Java两整数相除向上取整

前言:Java中两个整数相除,如果不能整除,默认是向下取整的。例如:11 除以 3 的结果是 3。然而,某些情况下(eg. 把11个糖果,每3个分一堆,不足三个也分成一堆,可以分几堆?),我们需要向上取整,这样的情况该如果处理呢?

方式一: 添加三目运算符逻辑代码

x / y + (x % y != 0 ? 1 : 0);

这种方法逻辑上很简单,如果x可以整除y,就将x / y 的结果加0,不能整除y就将x / y 的结果加1。

方式二:使用ceil函数

 (int)Math.ceil((double)x/y);
 // 或者
 (int)Math.ceil(x * 1.0 /y);

首先,将被除数转换成double类型,再将计算的结果通过Math.ceil()函数向上取整,这种方式是网上经常可以看到的方式。

方式三:其他逻辑

(x + y - 1) / y

这种方式为什么可以达到向上取整的效果呢,为什么x要加y - 1?

【2020/7/7 更新】网友在本评论区提供的证明方法,个人觉得更简洁,统一。因此,补充进来以供参考。感谢这位网友。
在这里插入图片描述

为了方便理解,我们通过具体的计算来说明。

  1. 对于可以整除的情况
    x = 9,y = 3
    (x + (y - 1)) / y,x加上了一个比y小的数,最终(x + (y - 1)) / y = (x / y) ...y - 1
    商为(x / y), 余数为(y - 1),余数相当于两数相除结果都小数部分,会被舍去,最终(x + (y - 1)) / y` = (x / y)

  2. 对于不可以整除的情况
    x = 11, y = 3
    11 / 3 = 3 ... 2
    x + (y - 1) = (3 * 3 + 2) + (3 - 1) = (3 * 3 + 2 - 1)+ 3= (3 * 3 + 3) + 2 - 1
    x + (y - 1) / y = ((3 * 3 + 3) + 2 - 1 )/ 3 = 4

就是x不能整除y余数肯定在1到y - 1之间,从中取出1给y - 1,使得被除数增加了一个y,进而商会增加1,余数部分为0到y - 2是会被舍去的。

最后总结
第一种方法:最简单、清楚,是比较推荐的;
第二种方法:虽然常见,但是涉及过多类型转换,个人不推荐
第三种方法:很巧妙,不太容易理解,也是推荐的

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

明月几时有666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值