(PAT Basic Level)1098 岩洞施工

该博客讨论了一个计算问题,即如何判断直径至少为1单位的管道能否水平送入地形复杂的岩洞中。通过输入岩洞顶部和底部的横截面数据,程序判断是否可以直接施工或需要削掉多少高度。示例展示了两种情况,一种是可以直接送入,另一种则需要削掉1个单位高度。代码中,博主通过比较顶部最小值和底部最大值来确定管道的可行性和最大直径。
摘要由CSDN通过智能技术生成

要将一条直径至少为 1 个单位的长管道水平送入地形复杂的岩洞中,究竟是否可能?下面的两幅图分别给出了岩洞的剖面图,深蓝色的折线勾勒出岩洞顶部和底部的轮廓。图 1 是有可能的,绿色部分显示直径为 1 的管道可以送入。图 2 就不可能,除非把顶部或底部的突出部分削掉 1 个单位的高度。

本题就请你编写程序,判断给定的岩洞中是否可以施工。

输入格式:

输入在第一行给出一个不超过 100 的正整数 N,即横向采样的点数。随后两行数据,从左到右顺次给出采样点的纵坐标:第 1 行是岩洞顶部的采样点,第 2 行是岩洞底部的采样点。这里假设坐标原点在左下角,每个纵坐标为不超过 1000 的非负整数。同行数字间以空格分隔。

题目保证输入数据是合理的,即岩洞底部的轮廓线不会与顶部轮廓线交叉。

输出格式:

如果可以直接施工,则在一行中输出 Yes 和可以送入的管道的最大直径;如果不行,则输出 No 和至少需要削掉的高度。答案和数字间以 1 个空格分隔。

输入样例 1:

11
7 6 5 5 6 5 4 5 5 4 4
3 2 2 2 2 3 3 2 1 2 3

输出样例 1:

Yes 1

输入样例 2:

11
7 6 5 5 6 5 4 5 5 4 4
3 2 2 2 3 4 3 2 1 2 3

输出样例 2:

No 1

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

代码:

#include <bits/stdc++.h>
#include <cmath>
#include <math.h>
using namespace std;
int main(){
    int N;
    cin>>N;//横向采样点数
    int i,j;
    int sample_top[101];
    int sample_bottom[101];
    int top_min,bottom_max;
    for(i=0;i<N;i++){
        cin>>sample_top[i];//岩洞顶部的采样点
    }
    for(i=0;i<N;i++){
        cin>>sample_bottom[i];//岩洞底部的采样点
    }
    top_min=sample_top[0];
    for(i=0;i<N;i++){
        if(sample_top[i]<top_min) top_min=sample_top[i];
    }//找出岩洞顶部最小值
    bottom_max=sample_bottom[0];
    for(i=0;i<N;i++){
        if(sample_bottom[i]>bottom_max) bottom_max=sample_bottom[i];
    }//找出岩洞底部最大值
    
    if(top_min>bottom_max){
        cout<<"Yes "<<top_min-bottom_max;
    }else{
        cout<<"No "<<abs(top_min-bottom_max)+1;
    }
    return 0;
}

 本题第一次做的时候做复杂了,后来一想其实直接找底部最大和顶部最小即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值