题目描述
在数组中的两个数字,如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对。输入一个数组,求出这个数组中的逆序对的总数P。并将P对1000000007取模的结果输出。 即输出P%1000000007
输入描述:
题目保证输入的数组中没有的相同的数字
数据范围:
对于%50的数据,size<=10^4
对于%75的数据,size<=10^5
对于%100的数据,size<=2*10^5
示例1
输入
1,2,3,4,5,6,7,0
输出
7
解题思路
归并排序的改进,把数据分成前后两个数组(递归分到每个数组仅有一个数据项),合并数组,合并时,出现前面的数组值array[i]大于后面数组值array[j]时;则前面数组array[i]~array[mid]都是大于array[j]的,count += mid+1 - i。
注意:这个数字是下标,而不是数字本身。
public class Solution {
int sum = 0;
public int InversePairs(int [] array) {
if(array.length == 0)
return 0;
MergeSort(array,0,array.length-1);
return sum;
}
public void MergeSort(int[] array,int start, int end)
{
if(start >= end)
return;
int mid = start+(end - start)/2;
MergeSort(array,start,mid);
MergeSort(array,mid+1,end);
Merge(array,start,mid,end);
}
public void Merge(int[] array,int start,int mid,int end)
{
int[] temp = new int[end - start + 1];
int i = start;
int j = mid + 1;
int k = 0;
while(i<=mid &&j<=end)
{
if(array[j]>=array[i])
temp[k++] = array[i++];
else{
temp[k++] = array[j++];
sum = (sum + mid - i + 1)%1000000007;
//此时发现逆序对,计数增加mid-i+1,因为当前面的数组值array[i]大于后面数组
//值array[j]时;则前面数组array[i]~array[mid]多个元素都是大于array[j]的
}
}
while(i<=mid) temp[k++] = array[i++];
while(j<=end) temp[k++] = array[j++];
for(int m = 0;m < temp.length;m++)
array[start+m]=temp[m];
}
}