[BZOJ1014][JSOI2008][Splay][RKHash]火星人prefix

[Problem Description]
火星人最近研究了一种操作:求一个字串两个后缀的公共前缀。比方说,有这样一个字符串:madamimadam,我们将这个字符串的各个字符予以标号:序号: 1 2 3 4 5 6 7 8 9 10 11 字符 m a d a m i m a d a m 现在,火星人定义了一个函数LCQ(x, y),表示:该字符串中第x个字符开始的字串,与该字符串中第y个字符开始的字串,两个字串的公共前缀的长度。比方说,LCQ(1, 7) = 5, LCQ(2, 10) = 1, LCQ(4, 7) = 0 在研究LCQ函数的过程中,火星人发现了这样的一个关联:如果把该字符串的所有后缀排好序,就可以很快地求出LCQ函数的值;同样,如果求出了LCQ函数的值,也可以很快地将该字符串的后缀排好序。 尽管火星人聪明地找到了求取LCQ函数的快速算法,但不甘心认输的地球人又给火星人出了个难题:在求取LCQ函数的同时,还可以改变字符串本身。具体地说,可以更改字符串中某一个字符的值,也可以在字符串中的某一个位置插入一个字符。地球人想考验一下,在如此复杂的问题中,火星人是否还能够做到很快地求取LCQ函数的值。
[Algorithm & Data Structure]
Splay + Hash
[Analysis]
首先这肯定不是后缀数组的那个lcq(否则就这么直接说出来岂不是有点太裸了……)然后有插入有修改神马的自然让人联想到splay。维护字符串好维护,但是如何判lcq呢?可以二分答案……但是如何在O(1)的时间里判断splay上的两个区间是否相等?这里用了一种靠RP的方法——RKHash。其实就是把字符串转成一个26进制数(当然如果把头尾的两个虚拟节点算上就是27进制)然后再mod一个合适的数(合适的数是啥……看自己RP了……)。这样两个不同的字符串hash值相同的几率比较小。splay上每一个节点维护一个hash值,update的时候顺便就更新了
[Pay Attention]
蛋疼啊刚开始维护了一个当前字符串长度len结果插入的时候没有更新……导致wa一片还不知道错哪里了……后来又是一片tle全卡在1s多一diudiu。然后把longlong改成int就过了……少用longlong啊少用longlong(mod效率特别渣……)
[Code]
/**************************************************************
    Problem: 1014
    User: gaotianyu1350
    Language: C++
    Result: Accepted
    Time:10540 ms
    Memory:4148 kb
****************************************************************/
 
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstring>
#include <iostream>
#include <queue>
using namespace std;
 
const int MAXLEN = 101000;
const int MOD = 9875321;
const int bit = 27;
 
int poww[MAXLEN] = {0};
int size[MAXLEN] = {0}, cc[MAXLEN] = {0}, hashsh[MAXLEN] = {0};
int ch[MAXLEN][2] = {0}, f[MAXLEN] = {0};
int root = 0, tot = 0;
int len, m;
char s[MAXLEN];
 
inline void init()
{
    poww[0] = 1;
    for (int i = 1; i < MAXLEN; i++)
        poww[i] = ((long long)poww[i - 1] * bit) % MOD;
}
 
inline void update(int now)
{
    size[now] = size[ch[now][0]] + 1 + size[ch[now][1]];
    hashsh[now] = (hashsh[ch[now][0]] + ((long long)poww[size[ch[now][0]]] * cc[now]) % MOD
                 + ((long long)poww[size[ch[now][0]] + 1] * hashsh[ch[now][1]]) % MOD) % MOD;
}
 
inline int get(int now)
{
    return ch[f[now]][0] == now ? 0 : 1;
}
 
inline void rotate(int now)
{
    int old = f[now], oldfather = f[old], which = get(now);
    ch[old][which] = ch[now][which ^ 1];
    f[ch[old][which]] = old;
    f[old] = now;
    ch[now][which ^ 1] = old;
    f[now] = oldfather;
    if (oldfather)
        ch[oldfather][ch[oldfather][0] == old ? 0 : 1] = now;
    update(old);
    update(now);
}
 
inline void splay(int now, int tar)
{
    for (int father = f[now]; father != tar; rotate(now), father = f[now])
        if (f[father] != tar)
            get(now) == get(father) ? rotate(father) : rotate(now);
    if (tar == 0)
        root = now;
}
 
inline int findkth(int k)
{
    int now = root;
    while (now)
    {
        if (k == size[ch[now][0]] + 1)
            return now;
        if (k <= size[ch[now][0]])
            now = ch[now][0];
        else
            k -= size[ch[now][0]] + 1, now = ch[now][1];
    }
    return 0;
}
 
inline void insert(int k, char c)
{
    k++;
    int kpoint = findkth(k), knpoint = findkth(k + 1);
    splay(kpoint, 0);
    splay(knpoint, kpoint);
    if (ch[knpoint][0]) printf("Wrong at 84\n");
    int now = ++tot;
    size[now] = 1;
    cc[now] = c - 'a';
    hashsh[now] = cc[now];
    ch[now][0] = ch[now][1] = 0;
    f[now] = knpoint;
    ch[knpoint][0] = now;
    update(knpoint);
    update(kpoint);
}
 
inline void change(int k, char c)
{
    k++;
    int now = findkth(k);
    splay(now, 0);
    cc[now] = c - 'a';
    update(now);
}
 
inline void print(int now)
{
    if (ch[now][0]) print(ch[now][0]);
    putchar(cc[now] + 'a');
    if (ch[now][1]) print(ch[now][1]);
}
 
inline int calc(int l, int r, int op)
{
    if (l > r) return 0;
    int ln = findkth(l - 1), rn = findkth(r + 1);
    splay(ln, 0);
    splay(rn, ln);
    if (!ch[rn][0]) printf("Wrong at 106!\n");
    if (op == 1)
    {
        print(ch[rn][0]);
        putchar('\n');
    }
    return hashsh[ch[rn][0]];
}
 
inline int lcq(int x, int y)
{
    x++; y++;
    if (x < y)
    {
        int temp = x; x = y; y = temp;
    }
    int left = 0, right = (len + 1) - x + 1;
    while (left < right)
    {
        int mid = (left + right + 1) >> 1;
        if (calc(x, x + mid - 1, 0) == calc(y, y + mid - 1, 0))
            left = mid;
        else
            right = mid - 1;        
    }
    //calc(x, x + left - 1, 1);
    //calc(y, y + left - 1, 1);
    return left;
}
 
int build(int father, int left, int right)
{
    if (left > right) return 0;
    int now = ++tot;
    int mid = (left + right) >> 1;
    cc[now] = s[mid] - 'a';
    f[now] = father;
    ch[now][0] = build(now, left, mid - 1);
    ch[now][1] = build(now, mid + 1, right);
    update(now);
    return now;
}
 
int main()
{
    init();
    //freopen("input.txt", "r", stdin);
    //freopen("user.out", "w", stdout);
    scanf("%s", s + 1);
    len = strlen(s + 1);
    s[len + 1] = s[0] = 'a' + 27 - 1;
    root = build(0, 0, len + 1);
    scanf("%d", &m);
    while (m--)
    {
        char command, theC;
        int x, y;
        scanf(" %c", &command);
        switch (command)
        {
            case 'Q':
                scanf("%d%d", &x, &y);
                printf("%d\n", lcq(x, y));
                break;
            case 'R':
                scanf("%d %c", &x, &theC);
                change(x, theC);
                break;
            case 'I':
                len++;
                scanf("%d %c", &x, &theC);
                insert(x, theC);
                break;
        }
    }
    //print(root);
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值