思路:最小生成树+prime+最大边
分析:只要按照prime的算法的思路求出最大的边即可
代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 510
#define INF 0xFFFFFFF
int t , n , ans;
int vis[MAXN];
int lowcost[MAXN];
int G[MAXN][MAXN];
void init(){
memset(vis , 0 , sizeof(vis));
for(int i = 1 ; i <= n ; i++){
for(int j = 1 ; j <= n ; j++)
G[i][j] = INF;
}
}
void prime(){
int pos;
vis[1] = 1;
ans = 0;
for(int i = 1 ; i <= n ; i++)
lowcost[i] = G[1][i];
for(int i = 1 ; i <= n ; i++){
pos = -1;
for(int j = 1 ; j <= n ; j++){
if(!vis[j] && (pos == -1 || lowcost[j] < lowcost[pos]))
pos = j;
}
if(pos == -1)
break;
vis[pos] = 1;
if(ans < lowcost[pos])
ans = lowcost[pos];
for(int j = 1 ; j <= n ; j++){
if(!vis[j] && lowcost[j] > G[j][pos])
lowcost[j] = G[j][pos];
}
}
printf("%d\n" , ans);
}
int main(){
int tmp;
scanf("%d" , &t);
while(t--){
scanf("%d" , &n);
init();
for(int i = 1 ; i <= n ; i++){
for(int j = 1 ; j <= n ; j++){
scanf("%d" , &tmp);
if(G[i][j] > tmp)
G[i][j] = G[j][i] = tmp;
}
}
prime();
}
return 0;
}