题目:
数组的每个索引作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i] ,(索引从 0 开始)。
每当你爬上一个阶梯你都要花费对应的体力花费值,然后你可以选择继续爬一个阶梯或者爬两个阶梯。
您需要找到达到楼层顶部的最低花费。在开始时,你可以选择从索引为 0 或 1 的元素作为初始阶梯。
示例:
- 示例 1:
输入: cost = [10, 15, 20]
输出: 15
解释: 最低花费是从cost[1]开始,然后走两步即可到阶梯顶,一共花费15。
- 示例 2:
输入: cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出: 6
解释: 最低花费方式是从cost[0]开始,逐个经过那些1,跳过cost[3],一共花费6。
注意:
- cost 的长度将会在 [2, 1000]。
- 每一个 cost[i] 将会是一个 Integer 类型,范围为 [0, 999]。
抛砖引玉
一个数组,索引 index 从 0 或者 1 开始,每次递增 1 或者 2,求 index 经过的元素和最小是多少
第一反应应该就是:每次两个数中取较小的数
再仔细一想,前面的选择后影响后面两个比较的数到底是什么,那么需要动态的看到 index 的变化:
比较的两个数依赖前一次的选,设 dp[i]为指针能到达 n 时(此时 index 可能在 i-1 或者 i-2 处)的最小和:
- 走到 i-1:dp[i-1] + cost[i - 1]
- 走到 i-2:dp[i-2] + cost[i - 2]
dp[i] = Math.min(dp[i-1] + cost[i - 1],dp[i-2] + cost[i - 2])
/**
* @param {number[]} cost
* @return {number}
*/
var minCostClimbingStairs = function(cost) {
const n = cost.length
const dp = new Array(n + 1)
dp[0] = dp[1] = 0
for (let i = 2; i <= n; i++) {
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
}
return dp[n]
}
简化
从上面可以看出 dp[i]只依赖 dp[i-1]、dp[i-2],则可以声明两个变量来记录 dp[i]依赖的 index 路径
var minCostClimbingStairs = function(cost) {
const n = cost.length
let prevNum = 0,
indexNum = 0
for (let i = 2; i <= n; i++) {
let next = Math.min(indexNum + cost[i - 1], prevNum + cost[i - 2])
prevNum = indexNum
indexNum = next
}
return indexNum
}
博客: 前端小书童
每天的每日一题,写的题解会同步更新到公众号一天一大 lee 栏目
欢迎关注留言