imooc疯狂的蚂蚁《Python开发简单爬虫》源代码

以下为imooc疯狂的蚂蚁《Python开发简单爬虫》源代码,调试有些问题。

html_downloader.py

import html_downloader
import html_output
import html_parser
import url_manager
import traceback


class SpiderMain:
    def __init__(self):
        #初始化所需的对象,包括url管理器,网页下载器,网页解析器,输出器提供给craw()使用
        self.urls=url_manager.UrlManager()
        self.downloader=html_downloader.HtmlDownloader()
        self.parser=html_parser.HtmlParser()
        self.outputer=html_output.HtmlOutputer()

    def craw(self,url):
        #一个计数
        count=1
        #添加根url
        self.urls.add_new_url(url)
        #开始解析
        while self.urls.has_new_url():
            try:
                #获取url
                new_url=self.urls.get_new_url()
                print('第%d个url:%s'%(count,new_url))
                #将该url的页面进行下载
                html_cont=self.downloader.download(new_url)
                #对下载的页面内容进行解析,存入两个变量中
                new_urls,new_data= self.parser.parse(new_url,html_cont)
                #将解析获得的新urls添加到url管理器中
                self.urls.add_new_urls(new_urls)
                #将数据进行收集
                self.outputer.collect_data(new_data)

                if count==1000:
                    break
                count+=1

            except:
                print('爬取失败')
                traceback.print_exc()

        #将收集的数据输出为一个html
        self.outputer.output_html()

if __name__=='__main__':
    root_url='http://baike.baidu.com/view/21087.htm'
    #root_url ='https://baike.baidu.com/item/Python/407313'
    obj_spider=SpiderMain()
    obj_spider.craw(root_url)

html_output.py

class HtmlOutputer(object):
    #手机数据需要一个列表进行维护
    def __init__(self):
        self.datas=[]

    def collect_data(self, new_data):
        if new_data is None:
            return
        self.datas.append(new_data)

    #输出一个html文档
    def output_html(self):
        fileout=open('output.html','w',encoding='utf-8')
        fileout.write('<html>')
        fileout.write('<head>')
        fileout.write('<meta charset=\'utf-8\'>')
        fileout.write('</head>')
        fileout.write('<body>')
        fileout.write('<table>')

        for data in self.datas:
            fileout.write('<tr>')
            fileout.write('<td>%s</td>' % data['url'])
            fileout.write('<td>%s</td>' % data['title'])
            fileout.write('<td>%s</td>' % data['summary'])
            fileout.write('</tr>')

        fileout.write('</table>')
        fileout.write('</body>')
        fileout.write('</html>')
        fileout.close()

html_parser.py

import re
import urllib.parse
from bs4 import BeautifulSoup

class HtmlParser(object):

    #对html_cont的内容进行解析
    def parse(self, page_url, html_cont):
        if page_url is None or html_cont is None:
            return
        soup=BeautifulSoup(html_cont,'html.parser',from_encoding='utf-8')
        new_urls=self._get_new_urls(page_url,soup)
        new_data=self._get_new_data(page_url,soup)
        return new_urls,new_data

    #获取页面上所有的url
    def _get_new_urls(self, page_url, soup):
        new_urls=set()
        #根据分析,链接的格式为:/view/12334.htm
        #/item/%E9%98%BF%E5%A7%86%E6%96%AF%E7%89%B9%E4%B8%B9/2259975
        links=soup.find_all('a',href=re.compile(r'/view/\d+\.htm'))
        for link in links:
            new_url=link['href']
            #url格式需要进行拼接,加上http://baike.baidu.com
            new_full_url=urllib.parse.urljoin(page_url,new_url)
            new_urls.add(new_full_url)
        return new_urls

    #获取该页面的数据,包含url、标题、简介
    def _get_new_data(self, page_url, soup):
        #以一个词典类型保存数据
        res_data={}
        #保存url
        res_data['url']=page_url
        #下面是标题的格式
        #<dd class="lemmaWgt-lemmaTitle-title"> <h1>Python</h1>
        title_node=soup.find('dd',class_="lemmaWgt-lemmaTitle-title").find('h1')
        res_data['title']=title_node.get_text()
        #开始获取简介的内容
        #<div class="lemma-summary" label-module="lemmaSummary">
        summary_node=soup.find('div',class_="lemma-summary")
        res_data['summary']=summary_node.get_text()
        return res_data



spider_main.py

import html_downloader
import html_output
import html_parser
import url_manager
import traceback


class SpiderMain:
    def __init__(self):
        #初始化所需的对象,包括url管理器,网页下载器,网页解析器,输出器提供给craw()使用
        self.urls=url_manager.UrlManager()
        self.downloader=html_downloader.HtmlDownloader()
        self.parser=html_parser.HtmlParser()
        self.outputer=html_output.HtmlOutputer()

    def craw(self,url):
        #一个计数
        count=1
        #添加根url
        self.urls.add_new_url(url)
        #开始解析
        while self.urls.has_new_url():
            try:
                #获取url
                new_url=self.urls.get_new_url()
                print('第%d个url:%s'%(count,new_url))
                #将该url的页面进行下载
                html_cont=self.downloader.download(new_url)
                #对下载的页面内容进行解析,存入两个变量中
                new_urls,new_data= self.parser.parse(new_url,html_cont)
                #将解析获得的新urls添加到url管理器中
                self.urls.add_new_urls(new_urls)
                #将数据进行收集
                self.outputer.collect_data(new_data)

                if count==1000:
                    break
                count+=1

            except:
                print('爬取失败')
                traceback.print_exc()

        #将收集的数据输出为一个html
        self.outputer.output_html()

if __name__=='__main__':
    root_url='http://baike.baidu.com/view/21087.htm'
    #root_url ='https://baike.baidu.com/item/Python/407313'
    obj_spider=SpiderMain()
    obj_spider.craw(root_url)

url_manager.py

class UrlManager(object):
    def __init__(self):
        self.new_urls=set()
        self.old_urls=set()

    #添加一个新的url
    def add_new_url(self, url):
        if url is None:
            return
        #当该url既不在新列表中也不在旧列表中,则添加到新列表中
        if url not in self.new_urls and url not in self.old_urls:
            self.new_urls.add(url)

    #判断是否还有新的待爬去的url
    def has_new_url(self):
        return len(self.new_urls)!=0

    #返回一个新的url,有出入操作
    def get_new_url(self):
        new_url=self.new_urls.pop()
        self.old_urls.add(new_url)
        return new_url

    #添加一组新url
    def add_new_urls(self, new_urls):
        if new_urls is None or len(new_urls)==0:
            return
        for new_url in new_urls:
            self.add_new_url(new_url)


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python是一种功能强大的编程语言,可以用于编写各种应用程序,包括网络爬虫。网络爬虫是一种可以自动从互联网上抓取数据的程序,它可以用于数据挖掘、搜索引擎优化、市场情报等多个领域。 Python网络爬虫源代码的编写过程包括以下几个步骤: 第一步,请求目标网站。使用Python中的requests库向目标网站发送http请求,并获取返回的网页内容。请求过程中需要设置请求头,以模拟浏览器访问,避免被目标网站封禁。 第二步,解析网页内容。使用Python中的正则表达式或者第三方库BeautifulSoup对网页进行解析,以提取自己需要的数据。正则表达式用于提取规则比较固定的数据,而BeautifulSoup则适用于提取HTML结构化数据。 第三步,保存数据。将提取到的数据保存到本地或者数据库中,以便后续的数据分析和使用。保存方式可以选择CSV、JSON或者数据库等多种方式。 第四步,设置爬虫规则。为了避免被目标网站封禁,需要设置合理的爬虫规则,包括时间间隔、请求频率、请求头等等。还需要遵守robots协议,禁止爬取受保护的数据。 第五步,创建多个线程或进程。为了提高爬取效率,需要使用多线程或者多进程的方式进行爬取。多线程方式可以使用Python中的threading模块,而多进程则可以使用multiprocessing模块。 以上就是Python网络爬虫源代码的基本编写过程。不过需要注意的是,在实际使用中还需要考虑目标网站的反爬虫策略,以及自身爬虫的合法性和道德性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值