高清壁纸网站

1 https://wallhaven.cc/
2 https://wallpaperscraft.com/
3 https://wallroom.io/
4 https://wallpapercave.com/
5 https://unsplash.com/
6 https://www.gamewallpapers.com/
7 https://bz.zzzmh.cn/index
8 https://bing.ioliu.cn/
9 https://www.pexels.com/zh-cn/
10 https://pixabay.com/zh/

### 如何在Simulink中实现BP神经网络与PID控制集成 #### 创建Simulink模型 为了实现在Simulink环境中集成了BP神经网络的PID控制器,首先需要建立一个新的Simulink模型。可以使用如下命令打开指定名称的模型: ```matlab simulinkModel = 'neural_network_pid_controller'; open_system(simulinkModel); ``` 这一步骤允许用户在一个可视化界面下操作和配置各个组件[^4]。 #### 构建BP神经网络结构 接下来,在Simulink内构建BP神经网络部分。通常情况下,会涉及到输入层、隐藏层(一层或多层)、输出层的设计。这些可以通过调用Neural Network Toolbox中的函数完成预设,并将其导入到Simulink环境当中作为子系统的一部分[^2]。 #### 集成PID控制器 对于PID控制器而言,则可以直接利用Simulink自带的标准库元件——Continuous下的`PID Controller`模块来进行添加。调整好相应的增益系数Kp, Ki, Kd之后,将此PID模块连接至上述提到的BP神经网络系统的适当位置,形成闭环控制系统[^3]。 #### 参数优化与训练过程 考虑到BP算法的核心在于反向传播误差从而不断修正权重直至达到最优解的过程;因此,在实际应用时还需要考虑如何让BP神经网络能够动态地适应不同工况的变化而自动调节自身的性能指标。此时可借助于MATLAB提供的工具箱功能对整个系统进行离线或在线的学习训练,进而提高整体响应速度和平稳度[^1]。 #### 运行仿真测试 最后,当所有的准备工作都完成后就可以启动仿真运行了。观察记录各项关键参数随时间变化的趋势曲线图,评估当前设计方案的有效性和合理性。如果有必要的话还可以进一步修改初始设定值重新执行迭代计算直到满足预期目标为止[^5]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值