【深度学习常用公开数据集】想学深度学习的宝子们往这儿看啦!提供最全的公开数据集地址和介绍
【深度学习常用公开数据集】想学深度学习的宝子们往这儿看啦!提供最全的公开数据集地址和介绍
文章目录
深度学习中的公开数据集在推动研究与应用方面起到了重要作用。常用的数据集涵盖了计算机视觉、自然语言处理、语音识别等多个领域。以下是常用的深度学习数据集,以及它们的来源、数据格式和应用场景的详细介绍。
1. ImageNet
来源与出处:
- 来源:ImageNet是一个大型视觉数据库,最初由斯坦福大学的Fei-Fei Li教授领导的团队创建。
- 出处:ImageNet官网
- 网址:https://image-net.org/
数据格式:
- 图像:JPEG格式
- 标签:ImageNet 提供了图像的类标注(分类),每个图像对应一个物体类别。
规模:
- ImageNet有超过1400万张标注图像,涵盖了大约1000个类别。每个类别大约有数千张图像。
应用场景:
- 图像分类:用于训练和评估深度学习模型(如AlexNet、ResNet、VGG等)的分类性能。
- 目标检测与分割:扩展了ILSVRC(ImageNet Large Scale Visual Recognition Challenge)后,用于目标检测和语义分割任务。
- 迁移学习:通过在ImageNet上预训练模型,并将其应用到其他视觉任务中。
2. COCO (Common Objects in Context)
来源与出处:
- 来源:由微软研究院发起,用于目标检测、分割和图像字幕生成等任务。
- 出处:COCO官网
- 网址:https://cocodataset.org/
数据格式:
- 图像:JPEG格式
- 标签:包括物体边界框、分割掩码、多标签(每个图像中可以有多个类别的物体),以及用于图像标注的自然语言描述。
规模:
- 包含超过330,000张图像,其中200,000张有标注信息,覆盖80类物体。标注包括对象的边界框、实例分割掩码、多标签等信息。
应用场景:
- 目标检测:模型需要识别图像中的多个对象及其边界框。
- 实例分割:要求对图像中的每个对象进行像素级的分割。
- 图像标注:根据图像内容生成相应的描述性文字。
3. MNIST
来源与出处:
- 来源:MNIST由Yann LeCun等人创建,用于手写数字识别。
- 出处:MNIST数据集
- 网址:http://yann.lecun.com/exdb/mnist/
数据格式:
- 图像:28x28像素的灰度手写数字图像,格式为二维矩阵。
- 标签:对应的数字标签(0-9)。
规模:
- 包含60,000张训练图像和10,000张测试图像。
应用场景:
- 手写数字识别:通常用于深度学习入门和模型的原型验证。
- 图像分类:作为简单的图像分类任务的基准。
4.CIFAR-10 / CIFAR-100
来源与出处:
- 来源:由加拿大蒙特利尔大学的Alex Krizhevsky和Geoffrey Hinton等人开发。
- 出处:CIFAR官网
- 网址:https://www.cs.toronto.edu/~kriz/cifar.html
数据格式:
- 图像:32x32像素的彩色图像,分为10类(CIFAR-10)或100类(CIFAR-100)。
- 标签:每张图像对应的类别标签。
规模:
- CIFAR-10:包含60,000张图像,分为10类,每类有6,000张图像。
- CIFAR-100:与CIFAR-10类似,但分为100类,每类600张图像。
应用场景:
- 图像分类:CIFAR是一个难度适中的分类任务数据集,常用于开发和评估新模型。
- 迁移学习:经常用于训练中小型卷积神经网络(CNN)的分类模型。
5.Pascal VOC
来源与出处:
- 来源:Pascal Visual Object Classes (VOC) 挑战赛由牛津大学的Mark Everingham等人创建。
- 出处:Pascal VOC官网
- 网址:http://host.robots.ox.ac.uk/pascal/VOC/
数据格式:
- 图像:JPEG格式
- 标签:包括边界框标注、物体分割掩码、多类别标注、动作检测标注等。
规模:
- 提供 20 类对象的标注,总计超过 10,000 张图像。
应用场景:
- 目标检测:标注数据中包括边界框位置,用于训练检测模型。
- 图像分割:提供像素级别的分割标签,用于训练分割模型。
- 动作检测:标注图像中的人物和所执行的动作,用于人类动作识别。
6.LFW (Labeled Faces in the Wild)
来源与出处:
- 来源:由麻省理工学院与计算机科学与人工智能实验室(MIT CSAIL)开发,用于人脸识别任务。
- 出处:LFW官网
- 网址:https://opendatalab.org.cn/OpenDataLab/LFW
数据格式:
- 图像:250x250像素的彩色人脸图像。
- 标签:包含人脸对应的身份信息。
规模:
- 包含13,000多张人脸图像,分为5749个人,部分人有多张图像。
应用场景:
- 人脸识别:用于训练和评估人脸识别模型。
- 身份验证:通过识别不同图像中的人脸来确认身份。
7.Cityscapes
来源与出处:
- 来源:由Max Planck Institute for Informatics发起,专注于城市街景的语义分割任务。
- 出处:Cityscapes官网
- 网址:https://www.cityscapes-dataset.com/
数据格式:
- 图像:高分辨率街景图像。
- 标签:包括像素级的语义分割标注(如道路、车辆、行人等)。
规模:
- 包含5000张高质量注释图像(训练集、验证集和测试集),涵盖 19 个类的语义分割标注。
应用场景:
- 自动驾驶:用于训练自动驾驶中的场景理解模型。
- 语义分割:用于城市环境中的分割任务。
8.KITTI
来源与出处:
- 来源:由卡尔斯鲁厄理工学院和丰田技术研究院共同创建,主要用于自动驾驶中的感知任务。
- 出处:KITTI官网
- 网址:https://www.cvlibs.net/datasets/kitti/raw_data.php
数据格式:
- 图像:彩色和灰度图像,来自汽车上的摄像头。
- 标签:包括目标检测、深度估计、光流估计、立体图像对等标注。
规模:
- 包含超过15,000张标注图像。
应用场景:
- 自动驾驶:用于训练车辆检测、障碍物检测等模型。
- 深度估计与立体匹配:通过图像对推断深度信息。
9.Open Images
来源与出处:
- 来源:由Google发布,是一个大规模的图像数据集,包含丰富的标注信息。
- 出处:Open Images官网
- 网址:https://storage.googleapis.com/openimages/web/index.html
数据格式:
- 图像:JPEG格式
- 标签:包括边界框、图像分类、多标签、物体分割标注等。
规模:
- 包含超过900万张图像,物体标注包括19,957类标签,边界框标注超过1500万。
应用场景:
- 多标签分类:用于图像中的多对象标注与识别。
- 目标检测与分割:常用于训练大规模的目标检测模型。
10.Medical Image Datasets (医疗图像数据集)
常见数据集:
- NIH Chest X-ray Dataset:胸腔X光图像,用于肺炎等疾病的分类和检测。
- BraTS (Brain Tumor Segmentation):脑部MRI扫描图像,用于脑瘤分割。
- LUNA16:肺部CT图像,用于肺结节检测。
数据格式:
- 图像:常见为DICOM或NIfTI格式,包含3D医学图像数据。
- 标签:包括分类标签(如癌症检测)、分割掩码等。
应用场景:
- 医学图像分类:检测和分类疾病。
- 分割与标注:用于医学图像中的病灶分割和分析。
这些公开数据集在深度学习模型的训练、评估、以及技术创新方面都起到了至关重要的作用。在实际项目中,选择合适的数据集来适应特定任务是模型成功的关键。