【21世纪的“3S”技术|深度学习】遥感(RS)、全球定位系统(GPS)和地理信息系统(GIS):深度学习在“3S”技术中的应用。附代码
【21世纪的“3S”技术|深度学习】遥感(RS)、全球定位系统(GPS)和地理信息系统(GIS)…深度学习在“3S”技术中的应用。附代码
文章目录
前言
“3S”技术是遥感(Remote Sensing, RS)、全球定位系统(Global Positioning System, GPS)和地理信息系统(Geographic Information System, GIS)三大技术的合称。这三项技术自20世纪后半叶逐渐发展,进入21世纪后,随着硬件能力的提升和大数据、深度学习等新兴技术的兴起,“3S”技术在多个领域得到了更广泛和深入的应用。
1.遥感(RS, Remote Sensing)
1.1概念
遥感是通过传感器对地球表面或大气进行远距离观测的技术,不直接接触目标对象。通常,卫星、飞机、无人机或其他平台上搭载的传感器收集数据,通过后期处理得出地球表面的物理和化学特性。
1.2分类
- 按平台分类:卫星遥感(如Landsat系列、Sentinel系列)、航空遥感(通过飞机搭载的传感器)、无人机遥感(通过飞机搭载的传感器)、地基遥感(通过飞机搭载的传感器)。
- 按传感器分类:光学遥感(可见光、近红外)、微波遥感(合成孔径雷达)、激光雷达(LiDAR)、多光谱遥感、超光谱遥感。
1.3原理
遥感主要依赖电磁波的反射、吸收、散射等现象。传感器接收反射或发射的电磁波信息,生成影像数据,这些数据通过分类、反演等技术获得物体的物理属性。例如,光学遥感通过可见光和近红外波段获取地物的光谱信息,合成孔径雷达(SAR)通过微波波段测量地表的高度或位移信息。
1.4应用
- 农业:作物监测、病虫害预警、产量预测。
- 环境保护:森林覆盖监测、土地退化、海洋生态系统。
- 城市规划:土地利用变化、基础设施监控。
- 灾害应急:洪水、地震、火灾等灾害监测。
1.5深度学习在遥感中的应用
深度学习通过构建复杂的神经网络模型,能够自动从海量遥感数据中提取特征,大幅提高了图像分类、目标检测、变化检测等任务的精度。
- 遥感图像分类:卷积神经网络(CNN)可以自动提取遥感影像中的特征,分类精度较传统方法有明显提升。
- 变化检测:通过对比不同时间段的遥感影像,深度学习模型可以识别地表的变化,应用于城市扩展、植被变化等领域。
- 目标检测:例如识别遥感影像中的车辆、建筑物、船只等。
深度学习通过卷积神经网络(CNN)、生成对抗网络(GAN)等技术,可以从遥感数据中自动提取特征和进行复杂的分析。
代码示例(遥感图像分类):
import tensorflow as tf
from tensorflow.keras import layers, models
# 创建卷积神经网络(CNN)模型
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='