【PyTorch学习-5】PyTorch高级操作|PyTorch生态系统相关工具|深度学习中的常用技巧|动态计算图与Autograd机制|模型调试与检查|分布式训练与并行计算|实用工具和技巧…

【PyTorch学习-5】PyTorch高级操作|PyTorch生态系统相关工具|深度学习中的常用技巧|动态计算图与Autograd机制|模型调试与检查|分布式训练与并行计算|实用工具和技巧…

【PyTorch学习-5】PyTorch高级操作|PyTorch生态系统相关工具|深度学习中的常用技巧|动态计算图与Autograd机制|模型调试与检查|分布式训练与并行计算|实用工具和技巧…



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览2024年即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz

前言

继续扩展PyTorch学习中的常用语法、函数和搭建深度学习神经网络常用的库和函数,以下是更深入的一些内容,涵盖了更多高级操作、实用工具以及相关的生态工具和技巧。涵盖更复杂的场景和使用技巧,以及一些常用的进阶方法与实践。

1. 实用工具和技巧

1.1 权重冻结

在迁移学习时,通常会冻结预训练模型的某些层,以保持其参数不变。

  • 权重冻结示例
for param in model.parameters():
    param.requires_grad = False  # 冻结所有层

解释:通过将 requires_grad 设置为 False 来冻结模型的权重,从而在微调时只更新新添加的层。

1.2 梯度裁剪(Gradient Clipping)

在反向传播时,有时会出现梯度爆炸的问题,导致模型不稳定。梯度裁剪是一个有效的解决方法。

  • 梯度裁剪示例
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)

解释clip_grad_norm_ 将梯度裁剪到一个特定的范围(例如最大梯度范数为 1.0),防止梯度过大导致训练不稳定。

1.3 保存和加载模型

在深度学习项目中,定期保存和加载模型非常重要。除了保存模型参数之外,还可以保存整个模型。

  • 保存模型参数
torch.save(model.state_dict(), 'model.pth')
  • 加载模型参数
model.load_state_dict(torch.load('model.pth'))
  • 保存整个模型
torch.save(model, 'model_complete.pth')
  • 加载整个模型
model = torch.load('model_complete.pth')

解释state_dict 只保存模型的参数,而保存整个模型则可以包含模型的结构和参数。使用 torch.save()torch.load() 可以方便地保存和恢复模型。

2. PyTorch中的优化器和自定义优化器

2.1 自定义优化器

  • 自定义优化器示例
from torch.optim.optimizer import Optimizer

class CustomOptimizer(Optimizer):
    def __init__(self, params, lr=0.01):
        defaults = dict(lr=lr)
        super(CustomOptimizer, self).__init__(params, defaults)

    def step(self, closure=None):
        for group in self.param_groups:
            for p in group['params']:
                if p.grad is None:
                    continue
                p.data.add_(-group['lr'], p.grad.data)

optimizer = CustomOptimizer(model.parameters(), lr=0.01)

解释:自定义优化器需要继承 Optimizer 类,并实现 step() 方法,step() 中包含更新参数的逻辑。

通过这些进阶知识点,您可以在 PyTorch 中完成更为复杂的模型开发与调试工作,并且能够灵活应用 PyTorch 的特性进行优化和高效计算。

欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览2024年即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值