【PyTorch学习-5】PyTorch高级操作|PyTorch生态系统相关工具|深度学习中的常用技巧|动态计算图与Autograd机制|模型调试与检查|分布式训练与并行计算|实用工具和技巧…
【PyTorch学习-5】PyTorch高级操作|PyTorch生态系统相关工具|深度学习中的常用技巧|动态计算图与Autograd机制|模型调试与检查|分布式训练与并行计算|实用工具和技巧…
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览2024年即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz
前言
继续扩展PyTorch学习中的常用语法、函数和搭建深度学习神经网络常用的库和函数,以下是更深入的一些内容,涵盖了更多高级操作、实用工具以及相关的生态工具和技巧。涵盖更复杂的场景和使用技巧,以及一些常用的进阶方法与实践。
1. 实用工具和技巧
1.1 权重冻结
在迁移学习时,通常会冻结预训练模型的某些层,以保持其参数不变。
- 权重冻结示例
for param in model.parameters():
param.requires_grad = False # 冻结所有层
解释:通过将 requires_grad
设置为 False 来冻结模型的权重,从而在微调时只更新新添加的层。
1.2 梯度裁剪(Gradient Clipping)
在反向传播时,有时会出现梯度爆炸的问题,导致模型不稳定。梯度裁剪是一个有效的解决方法。
- 梯度裁剪示例
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
解释:clip_grad_norm_
将梯度裁剪到一个特定的范围(例如最大梯度范数为 1.0),防止梯度过大导致训练不稳定。
1.3 保存和加载模型
在深度学习项目中,定期保存和加载模型非常重要。除了保存模型参数之外,还可以保存整个模型。
- 保存模型参数
torch.save(model.state_dict(), 'model.pth')
- 加载模型参数
model.load_state_dict(torch.load('model.pth'))
- 保存整个模型
torch.save(model, 'model_complete.pth')
- 加载整个模型
model = torch.load('model_complete.pth')
解释:state_dict
只保存模型的参数,而保存整个模型则可以包含模型的结构和参数。使用 torch.save()
和 torch.load()
可以方便地保存和恢复模型。
2. PyTorch中的优化器和自定义优化器
2.1 自定义优化器
- 自定义优化器示例
from torch.optim.optimizer import Optimizer
class CustomOptimizer(Optimizer):
def __init__(self, params, lr=0.01):
defaults = dict(lr=lr)
super(CustomOptimizer, self).__init__(params, defaults)
def step(self, closure=None):
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
p.data.add_(-group['lr'], p.grad.data)
optimizer = CustomOptimizer(model.parameters(), lr=0.01)
解释:自定义优化器需要继承 Optimizer 类,并实现 step()
方法,step()
中包含更新参数的逻辑。
通过这些进阶知识点,您可以在 PyTorch 中完成更为复杂的模型开发与调试工作,并且能够灵活应用 PyTorch 的特性进行优化和高效计算。
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览2024年即将召开的学术会议列表。会议入口:https://ais.cn/u/mmmiUz