【边缘AI崛起:从云端到边缘的智能革命】探索边缘AI的起源、发展及未来趋势,如何让智能设备在本地处理数据,实现低延迟、高效率的实时推理(一)
【边缘AI崛起:从云端到边缘的智能革命】探索边缘AI的起源、发展及未来趋势,如何让智能设备在本地处理数据,实现低延迟、高效率的实时推理(一)
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz
边缘AI(Edge AI)的发展
边缘AI(Edge AI) 是指将人工智能(AI)算法和数据处理推送到数据产生的“边缘”设备上,而不是依赖传统的集中式云计算。它结合了边缘计算(Edge Computing)和人工智能技术,使得数据能够在本地设备上进行实时处理、分析和决策,从而减少延迟、降低带宽消耗,并提高数据隐私性。
以下是边缘AI的详细发展历程、关键技术、应用场景以及未来趋势。
1. 边缘AI的起源和发展历程
边缘AI的发展可以追溯到以下几个阶段:
1.1 边缘计算的兴起
- 早期计算模式:传统的计算模式是将所有的数据处理、存储和计算任务都集中在远程服务器或云端进行,这种模式虽然便于集中管理,但也存在高延迟、带宽消耗大、依赖性强等问题。
- 边缘计算的概念:随着物联网(IoT)设备的快速发展,尤其是在需要实时反馈的应用场景(如自动驾驶、智能安防、智能家居等)中,传统的云计算架构已无法满足要求。
因此,边缘计算作为一种在离数据产生源更近的地方进行数据处理的新模式开始兴起。边缘计算的核心思想是将计算、存储、网络和智能分析能力推向网络边缘,使得数据能够在本地进行快速处理,从而减少与中心云端的通信负担。
1.2 AI的本地化需求
- 云AI的局限性:传统的人工智能模型通常需要大量的计算资源,这些计算资源集中在云端,而云端与本地设备之间的通讯延迟会影响实时性要求较高的应用(例如自动驾驶中的感知和决策)。因此,本地设备上执行AI算法的需求变得愈加迫切。
- 硬件与算法的进步:随着嵌入式硬件(如GPU、TPU、FPGA等)的性能提升,以及深度学习算法的优化,AI可以在边缘设备上进行处理,解决了实时性、带宽和隐私等问题。
1.3 边缘AI的全面发展
- 边缘AI芯片:为了满足在边缘设备上部署AI的需求,出现了专门的边缘AI芯片(例如NVIDIA的Jetson系列、谷歌的Coral Edge TPU、Intel的Movidius等)。这些芯片具备较高的计算能力,同时功耗较低,适合嵌入式设备。
- 5G和网络技术的支持:5G网络的高速低延迟特性为边缘AI的发展提供了极大的支持,尤其是在需要高速数据传输和低延迟响应的应用中,5G网络与边缘计算的结合极大推动了边缘AI技术的发展。
2. 边缘AI的关键技术
边缘AI的发展离不开以下几项关键技术的支撑:
2.1 边缘计算(Edge Computing)
边缘计算是边缘AI的基础,它将计算和数据存储推向靠近数据源的地方,避免了传统的将所有数据传输到云端的方式。边缘计算能够减少带宽消耗、延迟和云端负担,提高响应速度和处理效率。
2.2 边缘AI硬件
边缘AI硬件包括低功耗、高效能的计算设备和加速器,例如:
- AI加速芯片:如NVIDIA Jetson、Google Coral Edge TPU、Intel Movidius等,这些芯片能够加速机器学习算法的推理过程。
- 嵌入式计算平台:包括具有计算和存储能力的小型计算机(如树莓派、NVIDIA Jetson Nano等)和嵌入式设备。
2.3 轻量化AI算法
在边缘设备上运行AI算法时,由于计算资源有限,需要采用轻量化的模型和算法。常用的技术包括:
- 量化(Quantization):将浮点数表示的模型权重转换为低精度的整数,减少存储和计算量。
- 剪枝(Pruning):去除神经网络中冗余的连接,减少模型的计算量。
- 知识蒸馏(Knowledge Distillation):将大模型的知识迁移到小模型上,以保证较小模型的准确性。
2.4 边缘AI框架与平台
- TensorFlow Lite:用于在移动和边缘设备上运行TensorFlow模型的轻量级版本。
- PyTorch Mobile:使PyTorch模型能够在移动设备和边缘设备上部署的框架。
- OpenVINO:由Intel提供,用于加速AI推理的工具套件,特别适用于边缘计算。
下一节请参考:【边缘AI崛起:从云端到边缘的智能革命】探索边缘AI的起源、发展及未来趋势,如何让智能设备在本地处理数据,实现低延迟、高效率的实时推理(二)