【论文推荐|深度学习,滑坡检测,多光谱影像,自然灾害,遥感】2022年Landslide4Sense竞赛成果:基于多源卫星影像的先进滑坡检测算法研究(八)
【论文推荐|深度学习,滑坡检测,多光谱影像,自然灾害,遥感】2022年Landslide4Sense竞赛成果:基于多源卫星影像的先进滑坡检测算法研究(八)
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文:
可访问艾思科蓝官网,浏览即将召开的学术会议列表。会议详细信息可参考:https://ais.cn/u/mmmiUz
论文DOI:10.1109/JSTARS.2022.3220845
VIII. 结论
近年来,遥感技术(RS)主要应用于自然灾害相关领域,特别是滑坡检测。在这些应用中,使用地球观测和遥感产品有许多优势,但最关键的优势是它们的时效性和客观性。滑坡事件的早期检测对于快速响应和有效管理其后果至关重要。随着卫星传感器数量和质量的增加,遥感领域近期获得了更高空间-时间分辨率的高质量图像。在数据可用性改善的背景下,研究的重点已转向从数据本身中提取信息和知识的方法[54]。因此,使用遥感图像的自动化解译方法替代专家知识基础的物理方法成为了研究的热点。
尽管深度学习(DL)模型在许多遥感应用中取得了良好的效果,但滑坡检测中的挑战,如从遥感数据中提取滑坡信息,直到近年来才引起机器学习和计算机视觉领域的关注。然而,目前的解决方案大多仅在局部区域实施,并遵循一个通用的程序,即使用标注的滑坡数据集对模型进行训练,这些数据集通常覆盖较小的区域[12],[21]。
考虑到模型泛化的相关问题,如不同诱因引发的影响、质量流动类型、区域的地质和形态特征、以及数据集的来源及其生成方式,局部级别的研究仍然占主导地位。用于训练现代深度学习模型的滑坡清单数据集通常是基于手工或知识驱动的半自动方法创建的。因此,为语义标注和大规模生成滑坡清单数据集实施这些方法通常是一个繁琐且昂贵的过程。在准备精确的滑坡清单时,除了分析单张图像外,还需要对每个案例区域的前后事件图像进行比对。因此,在大规模范围内找到具有高度准确标注的滑坡数据集是非常不现实的。由于缺乏这些数据集,对目前可用的滑坡检测深度学习解决方案的性能存在严重的担忧,尤其是在应用于尚未研究的新案例区域时。
为了解决上述问题,IARAI 组织了 L4S 竞赛,并提供了一个全球分布的滑坡清单数据集。该竞赛旨在推动创新算法的发展和展示,使用遥感图像进行滑坡自动检测,同时为不同深度学习解决方案在自动滑坡检测方面提供公平客观的比较。
本文总结了 2022 年 L4S 竞赛的优秀获奖团队。竞赛专注于开发深度学习解决方案,以解决使用遥感图像检测滑坡中未解决的挑战,图像来自世界各地的不同地区。我们的获奖团队提出了不同的策略和算法。
- 第一名团队识别了三个主要挑战:大量的小型滑坡、滑坡与非滑坡之间的巨大类别不平衡,以及滑坡在研究区域的分布不一致,进而影响图像块的质量。为应对这些挑战,他们进行了多次实验,并获得了竞赛最高的 F1 分数 73.07%。为了更好地表示小型滑坡,他们对原始图像块进行了从 128×128 像素到 512×512 像素的尺度提升。该团队通过强调自注意力操作,整合了 Swin Transformer、EfficientNetV2 和 SegFormer 三个模型。
- 第二名团队使用 Swin Transformer 作为编码器,并采用自注意力机制来进一步提升滑坡检测效果。此外,他们还采用自训练策略来增强其提出的模型在竞赛测试数据上的泛化能力。为了克服滑坡与非滑坡类别之间的不平衡,第一名团队应用了 Lovasz 损失和在线困难样本挖掘策略。然而,第二名团队的成功则来自于其不平衡的训练方法。
- 第三名团队提出了一个结合混合监督损失和自训练(包括伪标签和蒙特卡罗 dropout 策略)的方法来训练他们的网络进行滑坡检测。该团队使用 DenseCRF 后处理网络输出,以提高滑坡边缘的精度。
- 特别奖团队则引入了基于 MobileNetV2 的多光谱 U-Net 来处理由竞赛提供的 Sentinel-2 和 ALOS PALSAR 多光谱数据,用于滑坡检测。在竞赛的测试阶段,他们使用训练好的模型为验证数据集生成了标注,并通过将新标注数据添加到训练数据集中来重新训练他们提出的 U-Net。
竞赛四个获奖团队提供的深度学习解决方案在 CDCEO 2022 Workshop(IJCAI-ECAI 2022,第31届国际人工智能联合会议和第25届欧洲人工智能会议)的卫星会议上由相关作者展示。
L4S 竞赛结束后,数据集仍然可以访问,未来发展排行榜也为进一步的研究和贡献提供了平台,网址为 https://www.iarai.ac.at/landslide4sense/challenge/。通过该平台,任何人都可以在测试数据集上提交滑坡检测结果,比较与其他用户的表现,并理想地提高本文所展示的准确度。值得注意的是,L4S 是首个基于多源卫星影像进行滑坡检测的竞赛,并对该领域产生了重要影响;此外,参与者一致认为该竞赛在计算机视觉和机器学习领域也是一个极具挑战性和趣味性的课题。
PS:这个网站我一直进不去。。。不知道怎么回事?
随着气候变化带来的挑战日益加剧,全球科学家可能没有足够的时间和资源基于实地工作生成滑坡清单数据集。然而,现代深度学习解决方案,特别是那些基于如此大量的遥感数据的解决方案,必须能够应对自然灾害监测和风险评估。因此,开发创新的深度学习解决方案并在全球数据集上进行训练,对于从遥感数据中生成及时的信息以应对未来滑坡事件至关重要。L4S 2022 数据为评估所有新开发的滑坡检测深度学习算法提供了一个宝贵的基准数据集,期望通过 L4S 竞赛开发的算法能够激发更高效、更精确的算法发展。
第二届生成式人工智能与信息安全国际学术会议(GAIIS 2025)
- 2025 2nd International Conference on Generative Artificial Intelligence and Information Security
- 会议时间:2025年2月21日-23日
- 大会地点:中国杭州
- 会议官网:http://www.ic-gaiis.org
- 提交检索:EI Compendex、Scopus
- 2025所录用论文将由ACM出版,高录用,EI快检索,优秀论文将推荐至期刊!