【CPCI、CNKI、EI检索】2025年3月-7月语言、教育、文化、心理多领域国际会议来袭!快来展示你的研究成果!
【CPCI、CNKI、EI检索】2025年3月-7月语言、教育、文化、心理多领域国际会议来袭!快来展示你的研究成果!
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://ais.cn/u/mmmiUz
前言
🌍亲爱的硕博生们,学术之路需要不断突破与交流!2025年多个国际学术会议已开启征稿,涵盖语言、教育、文化、社会科学等多个领域,快来投稿吧!🌍
🌟第四届社会科学与人文艺术国际学术会议 (SSHA 2025)
- 🎈2025 4th International Conference on Social Sciences and Humanities and Arts
- 🕙大会时间:2025 年 3 月 28 - 30 日
- 📍大会地点:中国・烟台
- ✨亮点:于魅力烟台,聚焦语言、教育与文化交流,碰撞思想火花。
- 📄检索:CPCI, CNKI, Google scholar
- 👨🎓适合投稿人群:语言、教育、文化领域硕博生,期望分享研究成果。
- 代码示例(Python - 社会网络分析)
import networkx as nx
import matplotlib.pyplot as plt
# 创建社会网络图
G = nx.Graph()
G.add_edges_from([('A', 'B'), ('A', 'C'), ('B', 'D'), ('C', 'D'), ('D', 'E')])
# 计算度数中心性
degree_centrality = nx.degree_centrality(G)
print("度数中心性:", degree_centrality)
# 可视化
nx.draw(G, with_labels=True, node_color='skyblue')
plt.title("Social Network Analysis")
plt.show()
🌟2025 年第三届语言、创新教育与文化交流国际学术会议(CLEC 2025)
- 🎈2025 3rd International Conference on Language, Innovative Education and Cultural Communication
- 🕙大会时间:2025 年 3 月 28 - 30 日
- 📍大会地点:中国・昆明
- ✨亮点:在春城昆明,探讨语言、创新教育与文化交流前沿话题。
- 📄检索:CPCI, CNKI,谷歌学术
- 👨🎓适合投稿人群:从事语言、教育、文化研究的硕博生,寻求学术交流。
- 代码示例(Python - 文本情感分析)
from sklearn.feature_extraction.text import TfidfVectorizer
from textblob import TextBlob
# 示例文本(多语言混合)
texts = [
"Education innovation requires cross-cultural communication.",
"La diversidad lingüística enriquece el aprendizaje."
]
# TF-IDF 特征提取
vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts)
print("关键词:", vectorizer.get_feature_names_out())
# 情感分析
for text in texts:
analysis = TextBlob(text)
print(f"文本: {text}\n情感极性: {analysis.sentiment.polarity:.2f}")
🌟第十一届人文学科和社会科学研究国际学术会议(ICHSSR 2025)
- 🎈2025 11th International Conference on Humanities and Social Science Research
- 🕙大会时间:2025 年 4 月 25 - 27 日
- 📍大会地点:中国・北京
- ✨亮点:汇聚北京,共探人文学科和社会科学研究,引领学术风向。
- 📄检索:CPCI,CNKI,Google scholar
- 👨🎓适合投稿人群:人文学科、社会科学专业硕博生,展示学术成果。
- 代码示例(Python - 问卷调查分析)
import pandas as pd
from scipy.stats import chi2_contingency
# 示例数据(文化与消费行为)
data = pd.DataFrame({
'AgeGroup': ['Young', 'Young', 'Old', 'Old'],
'Preference': ['Traditional', 'Modern', 'Traditional', 'Modern'],
'Count': [20, 30, 40, 10]
})
# 卡方检验
contingency_table = pd.crosstab(data['AgeGroup'], data['Preference'], values=data['Count'], aggfunc='sum')
chi2, p, _, _ = chi2_contingency(contingency_table)
print(f"卡方值: {chi2:.2f}, p值: {p:.4f}")
🌟第三届语言与文化传播国际学术会议(ICLCC 2025)
- 🎈The 3rd International Conference on Language and Cultural Communication
- 🕙大会时间:2025 年 5 月 16 - 18 日
- 📍大会地点:澳大利亚・悉尼
- ✨亮点:在悉尼研讨语言与文化传播,拓展国际学术视野。
- 📄检索:CPCI,CNKI,谷歌学术
- 👨🎓适合投稿人群:语言、文化传播相关硕博生,渴望国际交流。
- 代码示例(Python - 文化传播模拟)
import numpy as np
# 巴斯模型参数
M = 1000 # 总人口
p = 0.03 # 创新系数
q = 0.4 # 模仿系数
T = 20 # 时间周期
# 模拟传播
N = np.zeros(T)
N[0] = 1 # 初始采纳者
for t in range(1, T):
N[t] = N[t-1] + p*(M - N[t-1]) + q*(N[t-1]/M)*(M - N[t-1])
plt.plot(N, marker='o')
plt.xlabel('Time')
plt.ylabel('Adopters')
plt.title('Cultural Diffusion Model')
plt.show()
🌟2025 年运动,心理健康与社会国际学术会议(ICSMS 2025)
- 🎈2025 International Conference on Sport, Mental Health and Society
- 🕙大会时间:2025 年 6 月 13 - 15 日
- 📍大会地点:中国・广州
- ✨亮点:立足广州,聚焦运动、心理健康与社会关联,推动学术进步。
- 📄检索:EI, Scopus, Google Scholar
- 👨🎓适合投稿人群:运动、心理健康、社会学硕博生,分享研究见解。
- 代码示例(Python - 心理健康数据分析)
import pandas as pd
from sklearn.linear_model import LogisticRegression
# 示例数据(运动时长、社交频率、抑郁风险)
data = pd.DataFrame({
'Exercise': [5, 3, 7, 2, 6], # 每周运动小时数
'Social': [4, 2, 5, 1, 4], # 社交活动频率(1-5)
'DepressionRisk': [0, 1, 0, 1, 0] # 0=低风险,1=高风险
})
# 训练逻辑回归模型
model = LogisticRegression()
model.fit(data[['Exercise', 'Social']], data['DepressionRisk'])
# 预测新样本
new_sample = [[4, 3]]
print("预测风险:", model.predict_proba(new_sample)[:, 1])
🌟第二届教育、人文艺术与管理科学国际学术会议 (EHAMS 2025)
- 🎈2025 2nd International Conference on Education, Humanities, Arts and Management Sciences
- 🕙大会时间:2025 年 7 月 03 - 05 日
- 📍大会地点:西班牙・马德里(阿尔卡拉大学)
- ✨亮点:于阿尔卡拉大学,融合教育、人文艺术与管理科学研讨。
- 📄检索:知网 CNKI,谷歌学术 Google Scholar
- 👨🎓适合投稿人群:教育、人文艺术、管理科学硕博生,交流学术成果。
- 代码示例(Python - 教育数据可视化)
import seaborn as sns
import matplotlib.pyplot as plt
# 示例数据(学生成绩与艺术活动参与)
data = pd.DataFrame({
'Math': [85, 72, 90, 68, 88],
'ArtParticipation': [3, 1, 4, 2, 5] # 1-5级参与度
})
# 绘制相关性热力图
corr = data.corr()
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.title('Academic Performance vs. Art Engagement')
plt.show()
扩展工具建议
- 文本分析:
NLTK
、spaCy
(语言学研究) - 社会网络:
Gephi
、NetworkX
(可视化与分析) - 心理统计:
R
语言lme4
包(混合效应模型) - 教育管理:
DEAP
库(数据包络分析 - 资源效率评估)
以上内容覆盖社会科学中的量化分析、文化传播建模、心理健康预测和教育管理优化,可直接应用于论文数据分析或政策研究。
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://ais.cn/u/mmmiUz