【人工智能之大模型】GPT系列(GPT-1 到 GPT-2 和 GPT-3(以及后续 GPT-4 的概念性改进))模型是如何演进的?(四)

【人工智能之大模型】GPT系列(GPT-1 到 GPT-2 和 GPT-3(以及后续 GPT-4 的概念性改进))模型是如何演进的?(四)

【人工智能之大模型】GPT系列(GPT-1 到 GPT-2 和 GPT-3(以及后续 GPT-4 的概念性改进))模型是如何演进的?(四)



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://blog.csdn.net/gaoxiaoxiao1209/article/details/145231978


前言

下面从架构、能力提升、用户体验和应用场景等方面详细介绍 GPT-4 与 GPT Pro(或称 GPT-4 Pro、GPT-4 Turbo)的演进和区别,同时提供一个调用 OpenAI API 的示例代码,帮助理解如何在应用中使用这些模型。

代码解释

设置 API Key

openai.api_key = "your-api-key"

  • 这里需要替换为你自己的 OpenAI API 密钥,确保能够调用 OpenAI 的接口。

定义 generate_text 函数

def generate_text(prompt, model="gpt-4", max_tokens=100):

  • 输入提示 prompt、选择模型(默认为 GPT-4,但也可设为 “gpt-4-turbo” 来模拟 GPT Pro),以及生成文本的最大 token 数量。

调用 ChatCompletion API

response = openai.ChatCompletion.create(
     model=model,
     messages=[
         {"role": "system", "content": "You are a helpful assistant."},
         {"role": "user", "content": prompt}
     ],
     max_tokens=max_tokens,
     temperature=0.7,
 )

  • 使用 ChatCompletion 接口,通过一组对话消息构建上下文,其中 system 消息用于设定角色。返回的 response 包含生成的文本。

输出生成的文本

generated_text = response["choices"][0]["message"]["content"]

  • 从返回结果中提取生成文本。

示例主流程

  • 分别调用 GPT-4 和 GPT-4 Turbo 模型,输出生成结果。
  • 用户可以比较两者在生成质量、响应速度和文本风格上的差异,从而体验不同模型的效果。

总结

  • GPT 系列模型经过不断演进,从最初的 GPT-1 到 GPT-2、GPT-3,再到最新的 GPT-4,都在架构规模、训练数据和生成能力上实现了显著提升。
  • GPT Pro(如 GPT-4 Turbo)则在 GPT-4 的基础上进行了优化,侧重于更高效、更低延迟和更专业的应用场景。
  • 通过上述代码示例,我们展示了如何使用 OpenAI API 调用不同版本的 GPT 模型,并对生成文本进行比较。
  • 用户在实际应用中可以根据需求选择合适的模型,享受生成式语言模型带来的强大智能服务。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值