【人工智能之大模型】GPT系列(GPT-1 到 GPT-2 和 GPT-3(以及后续 GPT-4 的概念性改进))模型是如何演进的?(四)
【人工智能之大模型】GPT系列(GPT-1 到 GPT-2 和 GPT-3(以及后续 GPT-4 的概念性改进))模型是如何演进的?(四)
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/gaoxiaoxiao1209/article/details/145231978
前言
下面从架构、能力提升、用户体验和应用场景等方面详细介绍 GPT-4 与 GPT Pro(或称 GPT-4 Pro、GPT-4 Turbo)的演进和区别,同时提供一个调用 OpenAI API 的示例代码,帮助理解如何在应用中使用这些模型。
代码解释
设置 API Key
openai.api_key = "your-api-key"
- 这里需要替换为你自己的 OpenAI API 密钥,确保能够调用 OpenAI 的接口。
定义 generate_text 函数
def generate_text(prompt, model="gpt-4", max_tokens=100):
- 输入提示
prompt
、选择模型(默认为 GPT-4,但也可设为 “gpt-4-turbo” 来模拟 GPT Pro),以及生成文本的最大 token 数量。
调用 ChatCompletion API
response = openai.ChatCompletion.create(
model=model,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens,
temperature=0.7,
)
- 使用 ChatCompletion 接口,通过一组对话消息构建上下文,其中 system 消息用于设定角色。返回的 response 包含生成的文本。
输出生成的文本
generated_text = response["choices"][0]["message"]["content"]
- 从返回结果中提取生成文本。
示例主流程
- 分别调用 GPT-4 和 GPT-4 Turbo 模型,输出生成结果。
- 用户可以比较两者在生成质量、响应速度和文本风格上的差异,从而体验不同模型的效果。
总结
- GPT 系列模型经过不断演进,从最初的 GPT-1 到 GPT-2、GPT-3,再到最新的 GPT-4,都在架构规模、训练数据和生成能力上实现了显著提升。
- GPT Pro(如 GPT-4 Turbo)则在 GPT-4 的基础上进行了优化,侧重于更高效、更低延迟和更专业的应用场景。
- 通过上述代码示例,我们展示了如何使用 OpenAI API 调用不同版本的 GPT 模型,并对生成文本进行比较。
- 用户在实际应用中可以根据需求选择合适的模型,享受生成式语言模型带来的强大智能服务。