【人工智能之大模型】参数高效的微调PEFT有哪些方法?

【人工智能之大模型】参数高效的微调PEFT有哪些方法?

【人工智能之大模型】参数高效的微调PEFT有哪些方法?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/146701688


前言

​在大型语言模型(LLM)的发展过程中,参数高效微调(PEFT)方法应运而生,旨在减少微调过程中的计算和存储开销,同时保持模型性能。​以下是几种典型的PEFT方法及其在滑坡研究中的应用:​

1. 适配器(Adapters)

  • 适配器是在预训练模型中插入的小型神经网络模块,通过仅微调这些模块的参数,达到高效适应下游任务的目的。​
  • 在滑坡研究中,适配器可以用于特定地质条件下的模型调整,提高模型对滑坡区域识别的准确性。​

2. 软提示(Soft Prompts)

软提示方法通过在模型输入中添加可训练的连续向量,引导模型关注特定任务。在滑坡研究中,设计与滑坡特征相关的软提示,有助于模型在处理遥感影像时聚焦于关键地质特征,提高识别效果。​

3. 前缀微调(Prefix Tuning)

  • 前缀微调在模型输入前添加可训练的前缀向量,以调整模型的上下文理解
  • 在滑坡研究中,使用前缀微调可以引导模型关注滑坡相关特征,提高对滑坡区域的检测能力。​

4. 低秩适应(LoRA)

  • LoRA通过在模型权重中引入低秩矩阵,减少需要微调的参数数量
  • 在滑坡研究中,LoRA可以有效调整模型,使其适应滑坡识别任务,同时保持计算效率。​

5. 自适应低秩适应(AdaLoRA)

  • AdaLoRA在LoRA的基础上,引入自适应机制,根据模块的重要性动态分配参数预算。
  • 在滑坡研究中,AdaLoRA能够针对不同地质特征,灵活调整模型参数,提高滑坡预测的精度。​

6. 稀疏微调(Sparse Fine-Tuning)

  • 稀疏微调通过选择性地更新模型中重要的参数,减少计算开销。
  • 在滑坡研究中,稀疏微调可以聚焦于关键特征,提高模型对滑坡区域的识别能力。​

这些PEFT方法通过在不同层次和模块上进行参数调整,使模型在滑坡研究任务中实现高效适应。​未来的研究可能会结合多种PEFT方法,进一步提升模型在滑坡预测和识别中的性能和效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值