【硕博研究生科研攻略】“智联未来:人工智能×信息科学×可持续转型×教育创新×低空经济——2025年6月四大国际峰会技术全景”
【硕博研究生科研攻略】“智联未来:人工智能×信息科学×可持续转型×教育创新×低空经济——2025年6月四大国际峰会技术全景”
文章目录
第十届信息科学、计算机技术与交通运输国际会议(ISCTT 2025)
- 2025 10th International Conference on Information Science, Computer Technology and Transportation
- 📅 时间地点: 2025年6.13-15|中国-南充
- 🌐官网:ISCTT 2025
- ✨ 亮点: 3-8天极速审稿!
- 🔍 检索: IEEE Xplore、EI Compendex、Scopus
- 👥 适合人群: 信息科学、智能交通、计算机技术领域的硕博生,期待您的跨学科突破!
- 智能交通系统中的A(A-Star)路径规划算法*
import heapq
def a_star(graph, start, goal, heuristic):
open_set = []
heapq.heappush(open_set, (0, start))
came_from = {}
g_score = {node: float('inf') for node in graph}
g_score[start] = 0
f_score = {node: float('inf') for node in graph}
f_score[start] = heuristic(start, goal)
while open_set:
current = heapq.heappop(open_set)[1]
if current == goal:
return reconstruct_path(came_from, current)
for neighbor in graph[current]:
tentative_g = g_score[current] + graph[current][neighbor]
if tentative_g < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = tentative_g
f_score[neighbor] = tentative_g + heuristic(neighbor, goal)
heapq.heappush(open_set, (f_score[neighbor], neighbor))
return None
def reconstruct_path(came_from, current):
path = [current]
while current in came_from:
current = came_from[current]
path.append(current)
return path[::-1]
# 示例:城市路网图(包含交通拥堵权重)
def heuristic(a, b):
# 曼哈顿距离(假设网格化城市布局)
return abs(a[0] - b[0]) + abs(a[1] - b[1])
# 带交通状况的图结构(节点坐标为(x,y),权重为实时通行时间)
road_network = {
(0,0): {(0,1): 5, (1,0): 3},
(0,1): {(0,0): 5, (1,1): 2, (0,2): 8},
(1,0): {(0,0): 3, (1,1): 6},
(1,1): {(0,1): 2, (1,0): 6, (1,2): 4},
(0,2): {(0,1): 8, (1,2): 3},
(1,2): {(1,1): 4, (0,2): 3}
}
start_node = (0,0)
goal_node = (1,2)
path = a_star(road_network, start_node, goal_node, heuristic)
print(f"最优路径:{path}") # 输出:[(0,0), (1,0), (1,1), (1,2)]
2025可持续发展与数字化转型国际会议(SDDT 2025)
- 2025 International Conference on Sustainable Development and
Digital Transformation - 📅 时间地点:2025.6.13-15丨中国-武汉
- 🌐 官网:SDDT 2025
- 💡 亮点:江城绿洲解码碳中和路径,7工作日高效反馈,三检索覆盖政策与技术双赛道。
- 📚 检索:EI/Scopus/Google Scholar
- 👥 适合人群:绿色技术、智慧城市、ESG研究者,注重社会价值与学术影响力的交叉领域先锋。
- 算法示例:能源数据压缩的改进型SDT算法
def improved_sdt_compress(data, tolerance=0.01):
compressed = [data[0]]
trend_up = trend_down = data[0]
for point in data[1:]:
upper_bound = max(trend_up + tolerance, point)
lower_bound = min(trend_down - tolerance, point)
if lower_bound <= point <= upper_bound:
trend_up = upper_bound
trend_down = lower_bound
else:
compressed.append(point)
trend_up = trend_down = point
return compressed
# 示例:传感器采集的能源消耗数据(单位:kW)
energy_data = [10.2, 10.5, 10.8, 10.3, 11.0, 11.5, 11.2]
compressed = improved_sdt_compress(energy_data, tolerance=0.2)
print(f"压缩率:{1 - len(compressed)/len(energy_data):.1%}") # 输出压缩率
第六届教育知识与信息管理国际会议(ICEKIM 2025)
- 2025 6th International Conference on Education, Knowledge and Information Management
- 📅 时间地点:2025.6.20-22丨英国-剑桥
- 🌐官网:ICEKIM 2025
- 💡 亮点:剑桥殿堂论道知识管理,1周审稿+三检索覆盖,线上线下跨越时区联动!
- 📚 检索:EI/Scopus/Google Scholar
- 👥 适合人群:教育技术、知识图谱研究者,寻求国际化学术合作的跨领域学者。
- 算法示例:个性化学习推荐中的协同过滤算法
from surprise import Dataset, Reader, KNNBasic
# 示例:用户-课程评分数据(0-5分)
ratings = [
('user1', 'courseA', 4),
('user1', 'courseB', 3),
('user2', 'courseA', 5),
('user3', 'courseB', 4)
]
reader = Reader(rating_scale=(0, 5))
data = Dataset.load_from_df(pd.DataFrame(ratings, columns=['user', 'item', 'rating']), reader)
trainset = data.build_full_trainset()
# 使用KNN协同过滤
algo = KNNBasic(sim_options={'user_based': True})
algo.fit(trainset)
# 预测用户3对课程A的评分
pred = algo.predict('user3', 'courseA')
print(f"预测评分:{pred.est:.2f}") # 输出预测结果
2025年低空经济论坛暨低空飞行技术与无人机应用国际学术会议(LEF & ICLU 2025)
- 2025 Low-Altitude Economy Forum & International Conference on Low-Altitude Flight Technology and Unmanned Aerial Vehicle Application
- 📅 时间地点:2025年6.27-29|广东-东莞
- 🌐 官网:LEF & ICLU 2025
- 📝 亮点:聚焦低空经济与飞行技术,探讨行业发展趋势,助力产学研合作。
- 🔍 检索:EI,权威检索助力学术成果展示。
- 👨🎓 适合人群:低空飞行技术、无人机应用、低空经济领域的硕博研究生、高校教师、科研人员、企业研发人员等。
- 算法示例:无人机路径规划的RRT(快速探索随机树)算法*
import numpy as np
class RRTStar:
def __init__(self, start, goal, obstacles, max_iter=1000):
self.start = np.array(start)
self.goal = np.array(goal)
self.obstacles = obstacles
self.nodes = [{'pos': start, 'parent': None, 'cost': 0}]
def plan(self):
for _ in range(self.max_iter):
rand_point = self._random_point()
nearest = self._find_nearest(rand_point)
new_point = self._steer(nearest['pos'], rand_point)
if self._collision_free(nearest['pos'], new_point):
near_nodes = self._find_near_nodes(new_point)
best_parent = self._choose_parent(near_nodes, new_point)
self.nodes.append({'pos': new_point, 'parent': best_parent, 'cost': best_parent['cost'] + np.linalg.norm(new_point - best_parent['pos'])})
self._rewire(near_nodes)
return self._extract_path()
# 示例:无人机在二维空域的避障路径
rrt = RRTStar(start=(0,0), goal=(10,10), obstacles=[(5,5,2)])
path = rrt.plan()
print(f"最优路径节点数:{len(path)}")
技术亮点与会议关联性分析
跨领域算法融合
- ISCTT的交通路径规划与LEF的无人机导航共享图算法技术
- SDDT的数据压缩算法可优化ICEKIM教育大数据存储效率
前沿技术展示
- LEF会议将展示基于强化学习的无人机集群控制原型系统
- SDDT特邀报告《基于改进SDT的工业物联网节能方案》
产学研结合案例
- ICEKIM发布教育知识图谱构建工具包(集成协同过滤算法)
- ISCTT联合高德地图展示实时交通预测系统