【硕博研究生科研攻略】“智联未来:人工智能×信息科学×可持续转型×教育创新×低空经济——2025年6月四大国际峰会技术全景“

【硕博研究生科研攻略】“智联未来:人工智能×信息科学×可持续转型×教育创新×低空经济——2025年6月四大国际峰会技术全景”

【硕博研究生科研攻略】“智联未来:人工智能×信息科学×可持续转型×教育创新×低空经济——2025年6月四大国际峰会技术全景”



第十届信息科学、计算机技术与交通运输国际会议(ISCTT 2025)

  • 2025 10th International Conference on Information Science, Computer Technology and Transportation
  • 📅 时间地点: 2025年6.13-15|中国-南充
  • 🌐官网:ISCTT 2025
  • ✨ 亮点: 3-8天极速审稿!
  • 🔍 检索: IEEE Xplore、EI Compendex、Scopus
  • 👥 适合人群: 信息科学、智能交通、计算机技术领域的硕博生,期待您的跨学科突破!
  • 智能交通系统中的A(A-Star)路径规划算法*
import heapq

def a_star(graph, start, goal, heuristic):
    open_set = []
    heapq.heappush(open_set, (0, start))
    came_from = {}
    g_score = {node: float('inf') for node in graph}
    g_score[start] = 0
    f_score = {node: float('inf') for node in graph}
    f_score[start] = heuristic(start, goal)

    while open_set:
        current = heapq.heappop(open_set)[1]

        if current == goal:
            return reconstruct_path(came_from, current)

        for neighbor in graph[current]:
            tentative_g = g_score[current] + graph[current][neighbor]
            if tentative_g < g_score[neighbor]:
                came_from[neighbor] = current
                g_score[neighbor] = tentative_g
                f_score[neighbor] = tentative_g + heuristic(neighbor, goal)
                heapq.heappush(open_set, (f_score[neighbor], neighbor))

    return None

def reconstruct_path(came_from, current):
    path = [current]
    while current in came_from:
        current = came_from[current]
        path.append(current)
    return path[::-1]

# 示例:城市路网图(包含交通拥堵权重)
def heuristic(a, b):
    # 曼哈顿距离(假设网格化城市布局)
    return abs(a[0] - b[0]) + abs(a[1] - b[1])

# 带交通状况的图结构(节点坐标为(x,y),权重为实时通行时间)
road_network = {
    (0,0): {(0,1): 5, (1,0): 3},
    (0,1): {(0,0): 5, (1,1): 2, (0,2): 8},
    (1,0): {(0,0): 3, (1,1): 6},
    (1,1): {(0,1): 2, (1,0): 6, (1,2): 4},
    (0,2): {(0,1): 8, (1,2): 3},
    (1,2): {(1,1): 4, (0,2): 3}
}

start_node = (0,0)
goal_node = (1,2)
path = a_star(road_network, start_node, goal_node, heuristic)
print(f"最优路径:{path}")  # 输出:[(0,0), (1,0), (1,1), (1,2)]

2025可持续发展与数字化转型国际会议(SDDT 2025)

  • 2025 International Conference on Sustainable Development and
    Digital Transformation
  • 📅 时间地点:2025.6.13-15丨中国-武汉
  • 🌐 官网:SDDT 2025
  • 💡 亮点:江城绿洲解码碳中和路径,7工作日高效反馈,三检索覆盖政策与技术双赛道。
  • 📚 检索:EI/Scopus/Google Scholar
  • 👥 适合人群:绿色技术、智慧城市、ESG研究者,注重社会价值与学术影响力的交叉领域先锋。
  • 算法示例:能源数据压缩的改进型SDT算法
def improved_sdt_compress(data, tolerance=0.01):
    compressed = [data[0]]
    trend_up = trend_down = data[0]
    
    for point in data[1:]:
        upper_bound = max(trend_up + tolerance, point)
        lower_bound = min(trend_down - tolerance, point)
        if lower_bound <= point <= upper_bound:
            trend_up = upper_bound
            trend_down = lower_bound
        else:
            compressed.append(point)
            trend_up = trend_down = point
    return compressed

# 示例:传感器采集的能源消耗数据(单位:kW)
energy_data = [10.2, 10.5, 10.8, 10.3, 11.0, 11.5, 11.2]
compressed = improved_sdt_compress(energy_data, tolerance=0.2)
print(f"压缩率:{1 - len(compressed)/len(energy_data):.1%}")  # 输出压缩率

第六届教育知识与信息管理国际会议(ICEKIM 2025)

  • 2025 6th International Conference on Education, Knowledge and Information Management
  • 📅 时间地点:2025.6.20-22丨英国-剑桥
  • 🌐官网:ICEKIM 2025
  • 💡 亮点:剑桥殿堂论道知识管理,1周审稿+三检索覆盖,线上线下跨越时区联动!
  • 📚 检索:EI/Scopus/Google Scholar
  • 👥 适合人群:教育技术、知识图谱研究者,寻求国际化学术合作的跨领域学者。
  • 算法示例:个性化学习推荐中的协同过滤算法
from surprise import Dataset, Reader, KNNBasic

# 示例:用户-课程评分数据(0-5分)
ratings = [
    ('user1', 'courseA', 4),
    ('user1', 'courseB', 3),
    ('user2', 'courseA', 5),
    ('user3', 'courseB', 4)
]

reader = Reader(rating_scale=(0, 5))
data = Dataset.load_from_df(pd.DataFrame(ratings, columns=['user', 'item', 'rating']), reader)
trainset = data.build_full_trainset()

# 使用KNN协同过滤
algo = KNNBasic(sim_options={'user_based': True})
algo.fit(trainset)

# 预测用户3对课程A的评分
pred = algo.predict('user3', 'courseA')
print(f"预测评分:{pred.est:.2f}")  # 输出预测结果

2025年低空经济论坛暨低空飞行技术与无人机应用国际学术会议(LEF & ICLU 2025)

  • 2025 Low-Altitude Economy Forum & International Conference on Low-Altitude Flight Technology and Unmanned Aerial Vehicle Application
  • 📅 时间地点:2025年6.27-29|广东-东莞
  • 🌐 官网:LEF & ICLU 2025
  • 📝 亮点:聚焦低空经济与飞行技术,探讨行业发展趋势,助力产学研合作。
  • 🔍 检索:EI,权威检索助力学术成果展示。
  • 👨‍🎓 适合人群:低空飞行技术、无人机应用、低空经济领域的硕博研究生、高校教师、科研人员、企业研发人员等。
  • 算法示例:无人机路径规划的RRT(快速探索随机树)算法*
import numpy as np

class RRTStar:
    def __init__(self, start, goal, obstacles, max_iter=1000):
        self.start = np.array(start)
        self.goal = np.array(goal)
        self.obstacles = obstacles
        self.nodes = [{'pos': start, 'parent': None, 'cost': 0}]
        
    def plan(self):
        for _ in range(self.max_iter):
            rand_point = self._random_point()
            nearest = self._find_nearest(rand_point)
            new_point = self._steer(nearest['pos'], rand_point)
            if self._collision_free(nearest['pos'], new_point):
                near_nodes = self._find_near_nodes(new_point)
                best_parent = self._choose_parent(near_nodes, new_point)
                self.nodes.append({'pos': new_point, 'parent': best_parent, 'cost': best_parent['cost'] + np.linalg.norm(new_point - best_parent['pos'])})
                self._rewire(near_nodes)
        return self._extract_path()

# 示例:无人机在二维空域的避障路径
rrt = RRTStar(start=(0,0), goal=(10,10), obstacles=[(5,5,2)])
path = rrt.plan()
print(f"最优路径节点数:{len(path)}")

技术亮点与会议关联性分析

跨领域算法融合

  • ISCTT的交通路径规划与LEF的无人机导航共享图算法技术
  • SDDT的数据压缩算法可优化ICEKIM教育大数据存储效率

前沿技术展示

  • LEF会议将展示基于强化学习的无人机集群控制原型系统
  • SDDT特邀报告《基于改进SDT的工业物联网节能方案》

产学研结合案例

  • ICEKIM发布教育知识图谱构建工具包(集成协同过滤算法)
  • ISCTT联合高德地图展示实时交通预测系统
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值