【AI大模型学习路线】第二阶段之RAG基础与架构——第七章(【项目实战】基于RAG的PDF文档助手)模型部署与Web应用?

【AI大模型学习路线】第二阶段之RAG基础与架构——第七章(【项目实战】基于RAG的PDF文档助手)模型部署与Web应用?

【AI大模型学习路线】第二阶段之RAG基础与架构——第七章(【项目实战】基于RAG的PDF文档助手)模型部署与Web应用?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/147360609


前言

在基于 RAG 的 PDF 文档助手中,模型部署与 Web 应用环节承上启下:部署模块负责将预训练 LLM、检索组件与向量数据库封装为高可用服务,Web 应用则提供用户界面与 API,实现文档上传、问答交互与结果可视化。下文先给出整体架构与要点总结,然后分“模型部署”与“Web 应用”两大部分详细阐述,并通过 Python 代码示例演示关键实践。

一、整体架构与流程概览

flowchart LR
  A[PDF 上传] --> B[切分 & 嵌入索引]  
  B --> C[模型部署]  
  C --> D[FastAPI 后端]  
  D --> E[前端 (React/Vue)]  
  E --> F[用户交互 & 可视化]  
  C --> G[监控 & 日志]

  • 文档预处理后,模型部署模块将 RAG 检索器(向量数据库 + 重排序)和生成器(LLM)封装为微服务。
  • FastAPI 提供 REST/Streaming API,前端(React 或 Vue)通过 HTTP/WebSocket 调用,实现问答与文档可视化。
  • 全链路监控(Prometheus + ELK)收集性能与质量指标,为线上优化提供数据支撑。

二、模型部署

2.1 容器化与微服务化

  • Docker 容器化:使用 Docker 将 Hugging Face RAG 模型、FAISS/Chroma 向量库和 FastAPI 服务打包为镜像,保证环境一致性与可移植性​。
  • Kubernetes 编排:在 K8s 中以 Deployment + Service 形式部署各组件,实现自动伸缩、滚动升级与高可用​。
  • 资源配置:为模型 Pod 指定 GPU/CPU 资源,向量库 Pod 配置内存与 IOPS,确保低延迟检索与生成。

2.2 FastAPI 模型服务

# app.py
from fastapi import FastAPI, UploadFile
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
import uvicorn

app = FastAPI()

# 加载 RAG 模型与检索器
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-base")  
retriever = RagRetriever.from_pretrained("facebook/rag-token-base", index_name="exact", passages_path="docs.json")  
model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-base")

@app.post("/query/")
async def query_pdf(question: str):
    inputs = tokenizer(question, return_tensors="pt")  
    generated = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], n_docs=5)  
    answer = tokenizer.batch_decode(generated, skip_special_tokens=True)[0]
    return {"answer": answer}

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=8000)

  • FastAPI 以单文件示例呈现加载、推理与接口暴露全过程​。
  • 使用 Uvicorn/Gunicorn 生产就绪配置,并在 Dockerfile 中设置多工作进程。

2.3 CI/CD 与版本管理

  • GitHub Actions:构建镜像、运行单元测试、推送至 Docker Hub,并在 Kubernetes 上自动部署。
  • 镜像版本控制:利用 Git tag 与 image tag 对齐,实现模型与服务版本可回滚。

三、Web 应用

3.1 后端 API 设计

  • RESTful & Streaming:支持普通 POST /query 及 SSE/WebSocket 流式输出,满足长文本生成与多轮对话场景。
  • 跨域与安全:启用 CORS、中间件限流与 JWT 认证,保障 API 安全性​。
  • 异步任务:对于大文档索引与批量处理,结合 Celery 或 FastAPI BackgroundTasks 做后台作业调度。

3.2 前端架构

  • React + Tailwind:构建响应式 UI,包括文件上传、查询输入、答案高亮与来源链接。
  • 状态管理:使用 Redux 或 Zustand 管理文档状态与对话历史。
  • 组件示例
import { useState } from 'react';
import axios from 'axios';

function QnA() {
  const [question, setQuestion] = useState('');
  const [answer, setAnswer] = useState('');

  const handleQuery = async () => {
    const resp = await axios.post('/api/query/', { question });
    setAnswer(resp.data.answer);
  };

  return (
    <div>
      <textarea value={question} onChange={e => setQuestion(e.target.value)} />
      <button onClick={handleQuery}>提问</button>
      <div className="mt-4 p-2 bg-gray-100 rounded">{answer}</div>
    </div>
  );
}
export default QnA;

  • PDF Viewer 集成:使用 PDF.js 高亮检索到的段落,增强用户体验​。

3.3 监控与日志

  • Prometheus:抓取 /metrics 接口,监控请求延迟、QPS 与 GPU 利用率。
  • ELK Stack:收集 FastAPI 与 Kubernetes 日志,实现错误跟踪与使用分析。

通过上述模型部署与 Web 应用设计,基于 RAG 的 PDF 文档助手实现了从容器化、自动化交付,到前后端协同、实时监控的全流程工程化落地,为企业级智能文档问答提供了可扩展、可靠且高性能的解决方案。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值