【AI大模型学习路线】第三阶段之RAG与LangChain——第十二章(LangChain基础应用)Pydantic Object设计?

【AI大模型学习路线】第三阶段之RAG与LangChain——第十二章(LangChain基础应用)Pydantic Object设计?

【AI大模型学习路线】第三阶段之RAG与LangChain——第十二章(LangChain基础应用)Pydantic Object设计?



欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!

大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “学术会议小灵通”或参考学术信息专栏:https://fighting.blog.csdn.net/article/details/147526690


前言

  • 在 LangChain 中,Pydantic Object 设计主要通过 PydanticOutputParser 将大模型(LLM)输出的自由文本自动映射并验证为开发者预定义的 Pydantic 数据模型,从而实现结构化、类型安全的结果处理

核心价值包括:

  • 一是利用 Pydantic 强大的校验与类型转换能力,确保输出字段完整且类型正确;
  • 二是通过提示(prompt)中自动注入 JSON 或字段说明指令,引导 LLM 生成符合架构的文本;
  • 三是简化下游业务逻辑,免去手写解析与错误处理的繁琐;
  • 四是未来可与 Function Calling、多模态输出等高级功能无缝集成,助力大模型应用在数据抽取、智能问答等场景的可靠落地。

以下将分段从背景、核心原理、设计规范、使用流程、代码示例和未来展望展开详述。

Pydantic Object 设计背景与意义

大模型输出非结构化挑战

  • LLM(如 GPT-4、LLaMA)生成的回答通常是自由文本,虽具备流畅度与多样性,但缺乏固定格式,给后续程序化处理带来挫折,需要额外的正则或字符串拆分逻辑来提取信息

Pydantic 的优势

  • Pydantic 基于 Python 类型注解,可自动校验字段类型、填补缺省值、抛出详细错误,为数据模型提供严格的结构和文档化能力,极大提升了数据处理的鲁棒性与可维护性

PydanticOutputParser 在 LangChain 中的核心作用

结构化指令注入

  • PydanticOutputParserget_format_instructions() 方法会生成一段提示文本,包含 JSON 架构说明、字段名称和描述等,自动注入到 Prompt 中,引导模型按预期格式输出。

输出解析与验证

  • 调用 LLM 返回文本后,PydanticOutputParser 会使用 Pydantic 模型对该文本进行解析与校验,若缺少必填字段或类型不符,将直接抛出 ValidationError,或根据配置进行自动重试/修正。

Pydantic 模型设计原则

明确字段与描述

  • 字段名称:应与业务语义对齐,如 titlesummarykeywords
  • Field 描述:通过 Field(description=…) 明确说明生成模型需提供的内容,增强提示的可读性与准确性。

类型合理选取

  • 必填 vs. 可选:对核心输出字段设置必填类型(如 str),对非核心或可缺省字段使用 Optional 与默认值。
  • 复杂类型:支持列表、嵌套模型、字典等复杂结构,但应避免过度嵌套导致提示过长或模型混淆。

使用流程剖析

1. 定义 Pydantic 类

from pydantic import BaseModel, Field
from typing import List, Optional

class NewsItem(BaseModel):
    title: str = Field(..., description="新闻标题")
    summary: str = Field(..., description="简要摘要")
    keywords: List[str] = Field(default_factory=list, description="关键词列表")
    publish_date: Optional[str] = Field(None, description="发布时间")

2. 创建解析器并注入格式指令

from langchain.output_parsers import PydanticOutputParser

parser = PydanticOutputParser(pydantic_object=NewsItem)
fmt = parser.get_format_instructions()

3. 构造 PromptTemplate

from langchain.prompts import PromptTemplate

prompt = PromptTemplate(
    input_variables=["article"],
    partial_variables={"format_instructions": fmt},
    template="""
请根据以下新闻内容,按 JSON 格式输出:
{format_instructions}

新闻内容:
{article}
"""
)

4. 执行 LLMChain 并解析

from langchain.llms import OpenAI
from langchain.chains import LLMChain

llm = OpenAI(model="gpt-4", temperature=0.2)
chain = LLMChain(llm=llm, prompt=prompt)
result: NewsItem = chain.run_and_parse(article=news_text)

  • 此时,result 已是 NewsItem 实例,字段经过类型校验,无需后续手动解析。

Python 代码示例

from pydantic import BaseModel, Field
from typing import List, Optional
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain

# 定义数据模型
class NewsItem(BaseModel):
    title: str = Field(..., description="新闻标题")
    summary: str = Field(..., description="简要摘要")
    keywords: List[str] = Field(default_factory=list, description="关键词列表")
    publish_date: Optional[str] = Field(None, description="发布时间")

# 创建解析器
parser = PydanticOutputParser(pydantic_object=NewsItem)
format_instructions = parser.get_format_instructions()

# 构造 PromptTemplate
prompt = PromptTemplate(
    input_variables=["article"],
    partial_variables={"format_instructions": format_instructions},
    template="""
请根据以下新闻内容,按 JSON 格式输出:
{format_instructions}

新闻内容:
{article}
"""
)

# 调用链
llm = OpenAI(model="gpt-4", temperature=0.2)
chain = LLMChain(llm=llm, prompt=prompt)

# 执行并解析
news_text = "近日,某地发生6.0级地震,..."
news_item: NewsItem = chain.run_and_parse(article=news_text)
print(news_item.json(indent=2, ensure_ascii=False))

未来展望

  • Function Calling 集成:结合 OpenAI 函数调用接口,进一步简化解析流程,由模型直接返回 JSON 对象并由
    Pydantic 校验。
  • 多模态与动态架构:未来支持图像、音频等多模态输出的 Pydantic 模型定义,使结构化能力扩展至更丰富场景。
  • 自动化提示优化:通过提示调优(AutoPE)和在线反馈闭环,动态生成或调整 format_instructions,持续提升解析率与健壮性。

以上即为 LangChain 中基于 Pydantic Object 设计的详细说明及示例,帮助您在大模型应用中实现高效、可维护的结构化输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

985小水博一枚呀

祝各位老板前程似锦!财源滚滚!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值