1001:卡拉兹(Callatz)猜想:(Java解答)
对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?
/*import java.util.Scanner;
public class Main {
public static void main(String[] args){
Scanner sc = new Scanner(System.in);
int count = 0; //用于计数,随后要进行输出
int num = sc.nextInt();
while(num!=1)
{
if(num %2 == 0)
{
num = num/2;
}else
{
num = (num*3+1)/2;
}
count++;
}
System.out.println(count);
}
}*/
1002 写出这个数 (20 分)(Python)
num =input(); #接收一个数字,但是类型为str
#print("你输入的数字为:",num); #是为了测试用,查看输出的数字为什么
#print("你输入的类型为:",type(num)); #查看此时的数字是什么类型
count = len(num); #数字的个数,后续循环好用得上
#print("你输入的个数为:",count);
sum = 0; #为了接收数字各项的和
for a in range(0,count,1): #计算数字各项的和
temp = int(num[a:a+1]);
sum = sum + temp;
#print(sum)
arr = ["ling","yi","er","san","si","wu","liu","qi","ba","jiu"]; #用数组进行表示文字
sum = str(sum); #将数字的和转换为str型
#print("类型为:",type(sum));
count1 = len(sum); #数字的个数,后续循环好用得上
#print("个数为:",count1);
pri = ""; #表示pri为str型
for c in range(0,count1):
d = int(sum[c:c+1]); #d表示的是sum字符串切片的单一值
pri = pri+arr[d]+" "; #将接收的字符串全部塞进pri中,优点:能输出到一行中
print(pri.rstrip())
1017 A除以B (20 分)
本题要求计算 A/B,其中 A 是不超过 1000 位的正整数,B 是 1 位正整数。你需要输出商数 Q 和余数 R,使得 A=B×Q+R 成立。
A1 = input();
A = A1.replace(' ',''); #replace之后,就是直接变了,不会再回原来的值了,不是只变一次
B = int(A[-1]);
A = int(A[:-1]); #切片中,永远不包括后边的项[1:5],不包括5
Q = A//B; #'/'是取除法的意思,'//'取整
R = A%B;
print(Q,R);