机器学习-Python自然语言处理库

本文介绍了多个适用于Python的自然语言处理库,包括中文和英文处理工具,并提供了具体实例。中文方面涵盖了Hanlp、Jieba及snownlp等;英文则包括NLTK和Textblob。这些库功能全面且易于使用。
摘要由CSDN通过智能技术生成

自然语言处理的库非常多,下面列举一些对Python友好,简单易用,轻量,功能又全的库。

1 中文

中文自然语言处理工具评测:https://github.com/mylovelybaby/chinese-nlp-toolkit-test

awesome: https://github.com/crownpku/Awesome-Chinese-NLP

  • Hanlp

地址:https://github.com/hankcs/HanLP

  • Jieba

地址:https://github.com/fxsjy/jieba

  • snownlp

https://github.com/isnowfy/snownlp

2 英文

  • NLTK

地址:https://www.nltk.org/

  • Textblob

地址:https://github.com/sloria/TextBlob

3 实例

3.1 中文自然语言处理Pipeline实例

实例:https://github.com/JiaLiangShen/Chinese-Article-Classification-based-on-own-corpus-via-TextCNN-and-GBDT

3.2 英文Pipeline实例

实例:https://github.com/TiesdeKok/Python_NLP_Tutorial/blob/master/NLP_Notebook.ipynb

 

友情推荐:ABC技术研习社

为技术人打造的专属A(AI),B(Big Data),C(Cloud)技术公众号和技术交流社群。

Natural Language Processing Recipes: Unlocking Text Data with Machine Learning and Deep Learning using Python(2019) (自然语言处理秘诀:使用Python通过机器学习和深度学习解锁文本数据) Natural Language Processing Recipes - Unlocking Text Data with Machine Learning and Deep Learning using Python[2019].pdf 253页 3.8 MB 使用Python使用问题解决方法实现自然语言处理应用程序。这本书有许多编码练习,将帮助您快速部署自然语言处理技术,如文本分类、部分语音识别、主题建模、文本摘要、文本生成、实体提取和情感分析。 自然语言处理配方首先提供清洗和预处理文本数据的解决方案,以及使用高级算法分析文本数据的方法。您将看到文本语义和句法分析的实际应用,以及涉及文本规范化、高级预处理、pos标记和情感分析的复杂自然语言处理方法。您还将学习机器学习自然语言处理中的深度学习的各种应用。 通过使用本书中的配方,您将拥有一个解决方案工具箱,可以应用于现实世界中您自己的项目,使您的开发时间更快、更高效。 你将学到什么 •使用python(如nltk、textblob、spacy、斯坦福corenlp等)应用nlp技术 •实施信息检索、文本总结、情感分析和其他高级自然语言处理技术的概念。 •识别自然语言处理和自然语言生成问题的机器学习和深度学习技术 这本书是给谁的 希望通过编码练习刷新和学习自然语言处理的各种概念的数据科学家。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>