一、题目
给定一个初始元素全部为 0,大小为 m*n 的矩阵 M 以及在 M 上的一系列更新操作。
操作用二维数组表示,其中的每个操作用一个含有两个正整数 a 和 b 的数组表示,含义是将所有符合 0 <= i < a 以及 0 <= j < b 的元素 M[i][j] 的值都增加 1。
在执行给定的一系列操作后,你需要返回矩阵中含有最大整数的元素个数。
示例 1:
输入:
m = 3, n = 3
operations = [[2,2],[3,3]]
输出: 4
解释:
初始状态, M =
[[0, 0, 0],
[0, 0, 0],
[0, 0, 0]]
执行完操作 [2,2] 后, M =
[[1, 1, 0],
[1, 1, 0],
[0, 0, 0]]
执行完操作 [3,3] 后, M =
[[2, 2, 1],
[2, 2, 1],
[1, 1, 1]]
M 中最大的整数是 2, 而且 M 中有4个值为2的元素。因此返回 4。
注意:
- m 和 n 的范围是 [1,40000]。
- a 的范围是 [1,m],b 的范围是 [1,n]。
- 操作数目不超过 10000。
二、题解思路
- 题解思路:一开始想到的是根据ops中每行a*b的面积,最小的就为最大值的个数,但是发现对于[0,1]情况显然不适合,再分析,应该是在a那一行找出a的最小值乘以b那一行b的最小值,即为矩阵中最大元素的个数。
三、代码实现
- C++代码实现
class Solution {
public:
int maxCount(int m, int n, vector<vector<int>>& ops)
{
if(ops.empty())
return m*n;
else
{
int min_a = 50000,min_b = 50000;
for(int i = 0;i<ops.size();i++)
{
if(ops[i][0] < min_a)
min_a = ops[i][0];
if(ops[i][1] < min_b)
min_b = ops[i][1];
}
return min_a*min_b;
}
}
};