一、题目(中等)
编写一个程序,找出第 n
个丑数。
丑数就是只包含质因数 2, 3, 5
的正整数。
示例:
输入: n = 10
输出: 12
解释: 1, 2, 3, 4, 5, 6, 8, 9, 10, 12
是前 10 个丑数。
说明:
1
是丑数。n
不超过1690。
二、题解思路
- 题解思路1:在Leetcode——263.丑数的思想下进行循环,找到第n个丑数,但是这样会产生大量计算,在不是丑数的数上耗时很大,因此结果也可想而知,最后在计算第1500往后时,出现超时的情况。
- 题解思路2:三指针法:
- 定义两个vector数组,一个是存按顺序不断存入的丑数(nums),另一个(ThreeIndex)是存与2、3、5有关的3索引(对应丑数数组中);
- 使用3个索引对应的丑数数组中的值与2、3、5分别相乘,对于2,其与nums[ThreeIndex[0]]相乘,对于3,其与nums[ThreeIndex[1]]相乘,对于5,其与nums[ThreeIndex[2]]相乘;
- 对于他们三个的乘积结果,取其中最小的一个数作为下一个丑数,只要他们中的2或3或5命中了下一个丑数,则2或3或5对应的ThreeIndex索引值,即元素值就+1,然后将这个丑数存到丑数数组中,如此循环求解。
三、代码实现
- C++代码实现题解思路1
class Solution {
public:
bool UglyNumber(int num)
{
int flag = 0;
int count = 0;
if(num == 0)
return false;
if(num == 1)
return true;
while(num!= 1)
{
int temp = 0;
if(num%2==0)
temp = 2;
else if(num%3==0)
temp = 3;
else if(num%5==0)
temp = 5;
else
return false;
num /= temp;
}
return true;
}
int nthUglyNumber(int n)
{
int i = 0;
int count = 0; //记录当次出现丑数是第几次
while(count <= n)
{
if(UglyNumber(i))
{
count++;
if(count == n) //出现第n个丑数,则返回此时的丑数值i
return i;
}
i++;
}
return 0;
}
};
- C++代码实现题解思路2
class Solution {
public:
int nthUglyNumber(int n)
{
vector<int> nums(n,1); //按顺序存取每一位丑数
vector<int> ThreeIndex(3,0); //存取与2、3、5当下相乘的索引(nums中)
for(int i = 1;i<n;i++)
{
int temp1 = nums[ThreeIndex[0]]*2; //取2与其索引对应的nums中的值相乘:其中有一个就是下一个丑数
int temp2 = nums[ThreeIndex[1]]*3; //取3与其索引对应的nums中的值相乘
int temp3 = nums[ThreeIndex[2]]*5; //取5与其索引对应的nums中的值相乘
int temp = MinNumber(temp1,temp2,temp3); //三者中的最小值即为下一个丑数
if(temp == temp1) //看哪个(2,3,5)与其当下索引对应的nums值相乘的结果是刚才的丑数,则将索引+1
ThreeIndex[0]++; //为什么没有使用if--else if--else,因为例如2*3=6,3*2=6,所以对于这种情况,
if(temp == temp2) //2和3对应的索引都要+1
ThreeIndex[1]++; //三个索引根据if进行调整后,继续循环,确定下一个丑数,即下一个三种temp(1\2\3)的最小值
if(temp == temp3)
ThreeIndex[2]++;
nums[i] = temp;
}
return nums[n-1];
}
int MinNumber(int a,int b,int c) //判断三个数中的最小值
{
int flag = a < b ? a : b;
return flag < c ? flag : c;
}
};