张量与张量的运算

线性空间

K \mathfrak{K} K是任意域,满足下列公理的元素(被称为向量)组成的集合 V V V称为定义在 K \mathfrak{K} K上的向量(线性)空间

V V V上给出一个二元运算 V × V ⟶ V V\times V\longrightarrow V V×VV,且赋予 V V V阿贝尔群结构:

  1. x + y = y + x x+y=y+x x+y=y+x(交换律);
  2. ( x + y ) + z = x + ( y + z ) (x+y)+z=x+(y+z) (x+y)+z=x+(y+z)(结合律);
  3. 存在零元素,即零向量,对 ∀ x ∈ V \forall x\in V xV都有 x + 0 = x x+0=x x+0=x
  4. 对于 ∀ x ∈ V \forall x\in V xV,都有一个逆元素,使得 x + ( − x ) = 0 x+(-x)=0 x+(x)=0

在集合 K × V \mathfrak{K}\times V K×V上给定一个运算 ( λ , x ) ⟼ λ x (\lambda , x)\longmapsto \lambda x (λ,x)λx,使得具有如下性质:

  1. 1 ⋅ x = x 1\cdot x=x 1x=x
  2. ∀ α , β ∈ K , ∀ x ∈ V \forall \alpha, \beta \in \mathfrak{K},\forall x\in V α,βK,xV都有 ( α β ) x = α β ( x ) (\alpha \beta)x=\alpha \beta (x) (αβ)x=αβ(x)(结合律)

以及,可以延伸出来的:

  1. ( α + β ) x = α x + β x (\alpha +\beta)x=\alpha x+\beta x (α+β)x=αx+βx
  2. λ ( x + y ) = λ x + λ y \lambda (x+y)=\lambda x+\lambda y λ(x+y)=λx+λy

可见,向量空间和群环域一样都是一种代数学的基本结构,这也就意味着向量空间中的向量可以是多项式,函数,序列等,只要满足它们的集合满足上述公理即可,而 K \mathfrak{K} K在这里提供的是一个“标量”的角色。

维数与基底

线性相关性

空间 V V V的向量 v 1 , ⋯   , v n v_1, \cdots, v_n v1,,vn中,如果存在一个不全为 0 0 0的标量,使得:
α 1 v 1 + α 2 v 2 + ⋯ + α n v n = 0 \alpha_1v_1+\alpha_2v_2+\cdots+\alpha_nv_n=0 α1v1+α2v2++αnvn=0
则称向量组 v 1 , ⋯   , v n v_1, \cdots, v_n v1,,vn线性相关的,否则则是线性无关的。

给定的一个向量组中,最大的线性无关子向量组的元素个数,即是该向量组的

维数

在整个向量空间 V V V中,最大线性无关向量组的元素个数为 n n n,那么称该空间的维数为 n n n,记作 d i m V = n dimV=n dimV=n

基底

V V V n n n维向量空间,任意 n n n个线性无关的向量 e 1 , ⋯   , e n e_1,\cdots,e_n e1,,en构成的组就称为空间 V V V的(有限的线性的)基底。

对偶空间

线性函数

如果有映射 f : V ⟶ K f:V\longrightarrow \mathfrak{K} f:VK,且:
f ( α x + β y ) = α f ( x ) + β f ( y ) , ∀ α , β ∈ K , ∀ x , y ∈ V f(\alpha x+\beta y)=\alpha f(x)+\beta f(y), \forall \alpha , \beta \in \mathfrak{K}, \forall x,y\in V f(αx+βy)=αf(x)+βf(y),α,βK,x,yV

则称 f f f是定义在 V V V上的线性函数

对偶空间和对偶基底

V V V上有线性函数 f f f g g g,那么令:

( α f + β g ) ( x ) = α f ( x ) + β g ( y ) (\alpha f+\beta g)(x)=\alpha f(x)+\beta g(y) (αf+βg)(x)=αf(x)+βg(y)

可以验证, α f + β g \alpha f+\beta g αf+βg也是一个线性函数,于是,我们可以定义:

向量空间 V V V中所有的线性函数也可以构成一个向量空间,该向量空间被称为 V V V的对偶空间,记作: V ∗ = L ( V , K ) V^*=\mathcal{L} (V, \mathfrak{K}) V=L(V,K)。因为符合向量空间的定义,所以对偶空间内的元素本质是线性函数的同时,也可以称为向量。

于是,对偶空间 V ∗ V^* V中的元素被称为共变向量(余向量),称 V V V中的元素为反变向量

从本质上来讲,如果一个定义在 K \mathfrak{K} K上有一个向量空间 V V V,它有一组基底 { e 1 , ⋯   , e n } \{e_1,\cdots,e_n\} {e1,,en},那么定义它的对偶基底 { e 1 , ⋯   , e n } \{e^1,\cdots,e^n\} {e1,,en}时,则是如下过程:

  1. 首先,对偶基的本质是一个函数,它的定义域即是 V V V,其中的元素是向量,任何向量都可以被表示为形如: v = v 1 e 1 + ⋯ + v n e n v=v^1e_1+\cdots+v^ne_n v=v1e1++vnen的形式,其中 v 1 , ⋯   , v n ∈ K v^1,\cdots,v^n\in \mathfrak{K} v1,,vnK,是对应方向上的分量;
  2. 然后,对偶基的值域是 K \mathfrak{K} K,在满足上述定义的时候,对偶函数 e i e^i ei作用于向量 v v v上时,就得到了 v v v e i e_i ei方向上的分量 e i e^i ei
  3. 因此,对偶基的构造就要满足: e i e j = δ i j e^i{e_j}=\delta _{ij} eiej=δij,其中 δ i j = { 1 i = j 0 i ≠ j \delta _{ij}=\left\{\begin{matrix} 1 & i=j\\ 0 & i\ne j \end{matrix}\right. δij={10i=ji=j

多重线性映射

如果在 K \mathfrak{K} K上有向量空间 V 1 , ⋯   , V p , U V_1,\cdots,V_p,U V1,,Vp,U,映射

f : V 1 × ⋯ × V p ⟶ U f:V_1\times\cdots \times V_p\longrightarrow U f:V1××VpU

被称为多重线性映射( p p p-线性映射)。

张量

K \mathfrak{K} K是一个域, V V V是其上的一个向量空间, V ∗ V^* V V V V的对偶空间, p p p q q q都是大于等于零的整数,

V p × ( V ∗ ) q = V × ⋯ × V ⏟ p × V ∗ × ⋯ × V ∗ ⏟ q V^p\times (V^*)^q=\underbrace{V\times \cdots \times V} _p\times\underbrace{V^*\times \cdots \times V^*} _q Vp×(V)q=p V××V×q V××V

p p p重空间 V V V q q q重空间 V ∗ V^* V的笛卡尔积,所有的 p + q p+q p+q重线性映射:

f : V p × ( V ∗ ) q ⟶ K f:V^p\times (V^*)^q\longrightarrow \mathfrak{K} f:Vp×(V)qK

都被称为 V V V上的 ( p , q ) (p,q) (p,q)型, p + q p+q p+q张量

特别的, ( 1 , 0 ) (1,0) (1,0)型张量就是通常的 V V V上的线性函数,也就是 V ∗ V^* V的一个元素,而 ( 0 , 1 ) (0,1) (0,1)型张量就是 V ∗ V^* V上的一个线性函数,也就是 V V V的一个元素。

  • 21
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值