garlic
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
75、自适应城市交通灯:集体物联网设备的应用与优化
本文探讨了基于集体物联网设备的自适应城市交通灯系统,涵盖智能交通灯的自适应控制、微控制器在十字路口智能化中的应用、QR码识别技术以及阿拉木图高速公路交通优化案例。通过ESP32 Cam和Raspberry Pi等低成本硬件与LOGO!8 230RCE可编程控制器结合,实现交通灯的实时数据采集与动态调控。利用AnyLogic进行交通建模与仿真,验证了自适应算法在复杂交叉口的优化效果。研究表明,该系统能显著提升交通效率,减少拥堵,为智慧城市交通管理提供可行方案。原创 2025-09-26 05:09:35 · 21 阅读 · 0 评论 -
74、自动驾驶与智能交通:技术突破与城市交通优化
本文探讨了自动驾驶与智能交通领域的两项关键技术突破:基于激光雷达和深度相机的越野自动驾驶车辆控制系统,以及作为集体物联网设备的自适应城市交通灯系统。研究以GAZelle Next汽车和哈萨克斯坦阿拉木图市交通现状为例,提出并验证了高效的避障路径规划方法与基于微观流体动力学模型的智能交通灯控制算法。通过Raspberry Pi与摄像头构建的智能交通灯原型,实现了对特殊车辆的识别与优先通行,并在模拟中显著减少了车辆等待时间和交通拥堵。结果表明,这些技术不仅能提升交通效率与安全性,还可优化交警工作负担,推动智慧城原创 2025-09-25 09:40:36 · 20 阅读 · 0 评论 -
72、多路径冗余传输在部分路径不可达时的时效性研究
本文研究了在部分路径不可达的情况下,多路径冗余传输对数据包时效性的影响。通过分析不同网络结构和流量分配策略,探讨了路径负载均衡与数据包冗余传输在提高传输可靠性和及时性方面的有效性。研究表明,合理分配流量比例α和采用冗余传输可显著提升数据包按时送达的概率,尤其在高负载或关键延迟场景下效果明显。结合通信节点的额外负载均衡机制与动态调整策略,可进一步优化实时网络性能。研究成果适用于工业物联网、分布式系统等对传输时效性要求高的场景。原创 2025-09-23 12:50:44 · 13 阅读 · 0 评论 -
71、皮肤肿瘤自动化 ABCDE 图像分析:助力黑色素瘤早期诊断
本文介绍了一种基于ABCDE规则的皮肤肿瘤自动化图像分析方法,旨在提高黑色素瘤的早期诊断准确率。通过颜色分割、灰度转换和阈值处理等图像预处理技术,系统可自动计算不对称性、边界、颜色和大小等关键指标,并结合实验确定的阈值进行分类判断。研究实现了指标的时间序列跟踪与中间结果分析,开发了辅助诊断软件系统,在临床应用中达到82%的分类准确率。系统强调医生主导决策,提供可解释的分析结果,未来可通过优化算法、扩展数据集和融合多模态信息进一步提升性能。原创 2025-09-22 15:43:59 · 10 阅读 · 0 评论 -
70、人工智能在医学检测中的应用:血液粘度、血细胞比容及皮肤肿瘤分析
本文探讨了人工智能在医学检测中的两项重要应用:基于脉搏波分析的血液粘度与血细胞比容的非侵入性评估,以及皮肤肿瘤的ABCDE图像智能分析。通过理论建模、实验验证和设备开发,实现了对血液流变参数的快速测量;同时,利用图像处理与时间序列预测模型,提升了皮肤肿瘤早期筛查的准确性。研究表明,人工智能技术在提升临床诊断效率与精度方面具有广阔前景。原创 2025-09-21 11:11:51 · 9 阅读 · 0 评论 -
69、卷积神经网络在图像分析及人工智能控制血容量不足纠正中的应用
本文探讨了卷积神经网络(CNN)在医学图像分析中的应用,重点比较了ResNet101与ResNet50在痣节点和细胞核识别任务中的性能,验证了ResNet101的优越性。同时,研究了人工智能在非侵入性评估血液粘度和血细胞比容方面的潜力,通过理论、实验与临床研究建立了脉搏波参数与血容量指标的关系。文章还提出了技术实现流程、未来应用展望及面临的挑战,展示了AI在提升疾病诊断精度和实现血容量智能控制方面的广阔前景。原创 2025-09-20 09:54:24 · 10 阅读 · 0 评论 -
68、医疗领域的智能系统:KORDEX与黑色素瘤早期诊断
本文介绍了人工智能在医疗领域的两项重要应用:KORDEX专家系统用于急诊心脏病的诊断与治疗支持,以及基于卷积神经网络(如Mask_RCNN和ResNet101)的模型在黑色素瘤早期检测中的应用。KORDEX系统通过规则引擎提供风险评估、治疗建议和用药指导,但面临临床融合、专家权威和数据质量等挑战。在皮肤癌领域,利用深度学习技术自动识别组织切片中的痣巢,显著提升了黑色素瘤的诊断效率与准确性。文章还探讨了未来发展方向,包括优化模型、整合多模态数据和提升系统可解释性,以推动智能医疗系统的临床落地。原创 2025-09-19 13:34:25 · 10 阅读 · 0 评论 -
67、专家系统 KORDEX:解决紧急心脏病问题的利器
KORDEX-2 是一款用于解决紧急心脏病问题的专家系统,特别针对不稳定型心绞痛(UA)的预后预测与治疗优化。该系统基于临床专家与知识工程结合的方法构建,采用‘体征-综合征-疾病预后’的知识表示模型,显著提升了诊断准确性与治疗建议的合理性。系统通过三层结构实现知识形式化,并引入参数影响比较评估方法,大幅减少规则数量并提高运行效率。调试结果显示,KORDEX-2在预测不良结局方面的准确率远超医生平均水平,尤其在敏感性和特异性方面表现优异。近年来,系统已升级为混合架构,整合ESC指南、出血风险及COVID-19原创 2025-09-18 11:26:39 · 11 阅读 · 0 评论 -
66、深度学习算法在贫血检测与心脏病紧急问题解决中的应用
本文探讨了深度学习算法在贫血检测与心脏病紧急问题解决中的应用。在贫血检测方面,介绍了基于指部和结膜图像的采集方法,以及通过岭回归、图像滤波和语义分割等技术提升检测准确性的方案。在心脏病领域,重点分析了专家系统KORDEX的发展背景、面临的变革因素及其在急性冠状动脉疾病预后和治疗建议中的优势。文章指出,结合传统专家知识与现代神经网络的智能决策系统在未来医疗中具有广阔前景。原创 2025-09-17 14:30:52 · 10 阅读 · 0 评论 -
65、人工智能在青光眼患者依从性检测及贫血诊断中的应用
本文探讨了人工智能在青光眼患者依从性检测和贫血诊断中的应用。在青光眼领域,'青光眼依从性'专家系统通过构建测试集发现并修正知识库错误,经改进后在临床应用中达到79%的预测准确率。在贫血诊断方面,深度学习算法利用眼结膜、视网膜眼底图像、心电图及智能手机应用(如指甲颜色和PPG技术)实现非侵入性检测,多种方法各具优势与挑战。研究表明,人工智能在提升医疗诊断效率与准确性方面具有巨大潜力。原创 2025-09-16 15:33:27 · 8 阅读 · 0 评论 -
64、利用人工智能检测眼科患者治疗依从性
本文探讨了利用人工智能技术检测眼科患者治疗依从性的方法与应用,重点介绍了基于神经网络的专家系统'Glaucoma Compliant'的设计与实现。该系统通过分析患者的基本信息、疾病特征、生活方式和认知态度等多维度因素,能够有效预测青光眼患者的治疗依从性,分类准确率达到85%。文章还阐述了系统的结构、训练过程、优势及在临床实践中的应用前景,并指出了当前面临的挑战,如数据规模、模型可解释性和实时性等问题,提出了未来的改进方向。该研究为提升慢性眼病患者的治疗效果和生活质量提供了智能化解决方案。原创 2025-09-15 15:11:34 · 15 阅读 · 0 评论 -
63、人工智能在腰椎脊柱磁共振成像分析与眼科患者依从性检测中的应用
本文探讨了人工智能在腰椎脊柱磁共振成像分析和眼科患者依从性检测中的应用。在脊柱MRI分析中,通过提取8个定量参数并结合分割与分类神经网络,实现了对椎间盘状态的精确评估与病理自动识别,开发的软件模块可生成PDF报告,显著提升诊断效率与准确性。在眼科领域,基于人工神经网络构建的专家系统'Glaucoma Compliant'用于预测患者治疗依从性,助力个性化诊疗。系统已在实际临床环境中测试,平均诊断时间缩短至7分钟,分类正确性获放射科医生93%的积极评价。未来将通过数据优化、功能扩展和跨领域应用进一步提升系统性原创 2025-09-14 09:37:52 · 10 阅读 · 0 评论 -
62、利用神经网络算法进行腰椎磁共振成像扫描的计算机分析
本文研究基于神经网络的腰椎磁共振成像(MRI)自动分析方法,旨在解决传统手动分析耗时、主观性强及易受伪影干扰等问题。采用UNet深度学习模型对T2加权MRI图像进行椎间盘分割,经过训练与优化,模型准确率达到92%。在此基础上,开发了计算椎间盘面积、周长、高度、直径和信号强度等定量参数的算法,并构建病理分类模型以识别Schmorl疝等病变。最终集成分割、量化与病理识别功能,开发具备PDF报告生成功能的用户界面系统,实现MRI扫描分析的自动化与标准化,提升临床诊断效率与准确性。原创 2025-09-13 09:44:08 · 12 阅读 · 0 评论 -
61、利用卷积神经网络进行森林机械操作员培训的创新方法
本文提出了一种基于卷积神经网络(CNN)和多用户模拟器的创新方法,用于森林机械操作员的智能化培训。通过CNN对操作员工作中的问题区域进行分类,并利用遗传算法优化网络超参数,提升模型泛化能力与分类效率。设计了包含绩效监控、有目的行动评估和培训计划生成三大模块的模拟器系统,结合动态参数调整机制,根据操作员表现自适应修改培训难度。引入模糊逻辑处理技术操作质量评估中的不确定性,降低计算成本并提高决策合理性。该方法实现了虚拟环境中培训过程的闭环优化,显著提升了操作员培训的针对性与有效性,具有在运输和技术机器培训领域广原创 2025-09-12 12:35:19 · 8 阅读 · 0 评论 -
60、使用卷积神经网络进行森林机械培训
本文探讨了如何利用卷积神经网络优化森林机械操作员的培训过程。通过分析操作员的技术操作数据,结合结构-算法分析与倒置分析方法,构建基于CNN的智能培训评估模型。文章详细介绍了数据预处理、卷积层定义、下采样操作及网络训练流程,并展示了在医学、核电厂、飞行培训等领域的应用启示。最终目标是实现个性化培训方案,提升培训效率与操作技能,未来可结合虚拟现实技术进一步增强培训沉浸感与实用性。原创 2025-09-11 09:47:35 · 8 阅读 · 0 评论 -
59、大气污染物模拟与森林机械操作员培训研究
本文研究了基于规则和解析模型的大气污染物扩散模拟方法,通过数值实验验证了模型在降低计算复杂度方面的有效性,并应用于工业污染预测信息系统。同时,探讨了卷积神经网络(CNN)在森林机械操作员培训中的应用,设计并实施了对比实验,结果表明基于CNN的智能模拟器显著提升了培训效果。文章进一步分析了大气污染模拟与操作员培训之间的关联,提出了技术融合的发展趋势,包括智能化提升、VR/AR技术应用及跨领域合作,为环境保护与工业效率协同优化提供了新思路。原创 2025-09-10 16:19:00 · 195 阅读 · 0 评论 -
58、大气中人为排放物上升和转移过程的规则模型及神经网络训练数学模型
本文提出了一种基于规则的数学模型与神经网络相结合的方法,用于高效计算大气中人为排放物上升和转移过程中的污染物浓度分布。通过构建7个针对不同环境条件和排放特征的规则模型,显著降低了传统微分方程求解的计算复杂度。同时,训练神经网络作为决策支持系统的一部分,实现对大气污染物浓度的准确预测,尤其适用于数据不足场景下的动态调整。该方法在工业企业大气污染监测、管理及人员培训中具有广泛应用前景,为提升环境治理智能化水平提供了有效技术路径。原创 2025-09-09 14:11:21 · 197 阅读 · 0 评论 -
57、用于预测的神经网络训练数学模型及相关实验分析
本文介绍了一种用于预测污染物扩散的神经网络训练数学模型,基于显式有限差分格式模拟NO2在复杂交通环境下的传播行为,并通过计算实验分析了平静天气与定向风条件下幼儿园等社会重要对象附近的污染情况。研究开发了具备可视化评估和精确计算能力的软件系统,可用于生成训练神经网络所需的时间序列数据,尤其适用于输入信息不完整场景。实验表明,交通密度和气象条件显著影响污染物暴露风险,对居民区、幼儿园等选址具有重要指导意义。未来将结合更多环境因素优化模型与神经网络融合方法,提升预测准确性。原创 2025-09-08 14:10:41 · 7 阅读 · 0 评论 -
56、用于预测的神经网络训练数学模型
本文提出一种用于训练神经网络的数学模型,以解决社会重要场所空气质量监测中统计信息不足的问题。通过构建风速场、确定污染源数量与强度,并求解大气污染物转移方程,利用隐式与显式差分格式进行数值模拟,实现对污染物浓度的短期预测。该模型为数据有限条件下的神经网络训练提供了有效支持,具有在交通污染监控、环境管理与公共健康保护领域的广泛应用前景。原创 2025-09-07 10:15:25 · 9 阅读 · 0 评论 -
55、关键基础设施安全任务中的预防性分析与神经网络大气污染物预测
本文探讨了关键基础设施安全任务中的预防性分析与神经网络在大气污染物预测中的应用。介绍了分布式情景管理系统(SMS)的功能需求,包括全局搜索、接口生成和版权保密问题解决,并深入分析了在关键基础设施网络(INCs)和网络中心系统(NCSs)中基于情景控制模型的态势感知(SA)方法,提出DPE、DCS和DPF三项量化指标。通过多个实际应用案例验证了SMS的有效性,并提出一种用于预测交通相关大气污染物的神经网络数学模型,能够应对信息不完整、失真等问题,提升预测准确性。文章还展望了技术融合、跨领域合作与智能化决策等未原创 2025-09-06 15:10:08 · 8 阅读 · 0 评论 -
54、关键基础设施安全任务中的预防性分析
本文探讨了关键基础设施(INC)安全任务中的预防性分析方法,涵盖空间函数、状态空间度量、广义状态空间中的场景分类以及情境数字孪生(SDTs)的应用。通过引入统一的状态空间度量机制,实现了对数值与非数值变量的等效处理,支持跨类型参数的时空关系分析。结合可接受、安全、优选与最优场景的定义,为系统运行提供了明确的安全标准与决策依据。数字孪生技术被用于建模危险影响与响应策略,提升安全评估的准确性与前瞻性。整体框架为关键基础设施的安全规划、风险预警与应急响应提供了理论支撑和技术路径。原创 2025-09-05 11:52:33 · 6 阅读 · 0 评论 -
53、计算机测试与工业自然综合体建模技术解析
本文深入解析了两种关键技术:基于Rasch模型与贝叶斯算法的计算机测试模拟模型,可在单次会话中评估多维能力,并模拟考官行为;以及面向工业自然综合体(INCs)的情境建模系统(SMS),通过情境概念模型(SCM)实现层次化、因果式的智能建模,支持异构信息融合、地理参数处理与决策优化。文章对比了现有建模方法的不足,阐述了SMS在结构对应性、替代方案比较和问题溯源等方面的优势,并介绍了广义质量准则(GQC)在系统状态评估与决策支持中的核心作用。最后展望了两项技术在教育测评与复杂系统管理中的应用前景。原创 2025-09-04 14:25:10 · 8 阅读 · 0 评论 -
52、基于贝叶斯算法的自适应计算机测试系统:优化学生能力评估
本文介绍了一种基于贝叶斯算法的自适应计算机测试系统,旨在优化学生多维能力的评估。该系统结合项目反应理论与Rasch模型,通过动态选择问题序列和实时更新学生能力概率,提升测试效率与准确性。针对传统方法存在的随机性、信息利用率低及稳定性差等问题,提出利用熵和Kullback-Leibler散度进行正则化处理,有效增强算法鲁棒性。文章还展示了系统流程图、关键步骤、实际应用案例与技术实现要点,并探讨了其在多模态数据融合、个性化学习路径规划等方面的未来发展趋势,为智能教育评估提供了可靠的技术路径。原创 2025-09-03 14:49:35 · 8 阅读 · 0 评论 -
51、3D结构组装的分布式服务器与计算机自适应测试系统
本文介绍了一个基于Prolog的3D结构组装分布式服务器系统与一个模拟考官行为的计算机自适应测试系统。前者通过分布式架构和HTTP/JSON通信实现多客户端环境下组装方案的高效验证与灵活修改,具备良好的可扩展性和处理速度优势;后者结合Rasch模型与贝叶斯算法,构建能力评估模型,并提出基于熵与Kullback-Leibler散度的异常答案识别机制,提升测试准确性。两个系统分别在智能制造与教育测评领域提供了创新解决方案。原创 2025-09-02 13:39:57 · 7 阅读 · 0 评论 -
50、自动化控制与分布式系统技术解析
本文深入解析了自动化控制与分布式系统中的前沿技术,涵盖基于人工神经网络的控制器综合、混合神经控制器在终端控制中的应用,以及基于Prolog语言的分布式WEB服务器概念。文章详细阐述了各类控制器在抗干扰性、系统稳定性及非线性处理方面的优势,并结合Industry 4.0背景,提出利用Prolog构建可扩展的分布式系统以优化3D产品组装流程。通过仿真验证和实际应用场景分析,展示了人工智能方法在提升控制系统性能方面的显著成效,并展望了未来在多类型神经网络、系统优化与跨领域融合方向的发展潜力。原创 2025-09-01 13:02:29 · 8 阅读 · 0 评论 -
49、利用人工智能方法确保现代机电系统的鲁棒性
本文探讨了利用人工智能方法提升现代机电系统鲁棒性的关键技术,重点研究了在高精度校准台中应用神经网络和模糊逻辑等AI技术合成惯性传感元件(如浮子式角速度传感器和石英摆式加速度计)的数字控制器。通过对比模拟与数字控制方案,分析了AI方法在抗干扰能力、动态特性保持和系统集成性方面的优势,并结合实际航天测试案例验证了其在控制精度、稳定性及可靠性上的显著提升。未来,AI与先进控制技术的融合将推动机电系统向更高智能化发展。原创 2025-08-31 15:02:20 · 8 阅读 · 0 评论 -
48、工作与生活安全领域的人工智能系统
本文探讨了工作与生活安全领域中人工智能系统的应用,重点分析了基于负反馈的控制科学原理、系统建模与验证方法以及数值优化在控制器设计中的作用。通过VisSim 5.0对系统进行建模,验证了对象参数变化下系统的鲁棒性,并采用数值优化方法设计PID控制器,实现了快速、无静差的瞬态响应。文章还比较了不同结构控制器的性能,强调顺序控制器在处理任务和扰动时的一致性优势。结合汽车驾驶与飞机飞行实例,阐明负反馈抑制干扰的关键作用。最后,探讨了人工智能在交通控制与智慧城市建设中的潜力,指出提升系统安全性需融合先进控制理论与智能原创 2025-08-30 16:52:15 · 9 阅读 · 0 评论 -
47、工作与生活安全领域的人工智能系统:安全控制与优化分析
本文探讨了工作与生活安全领域中的人工智能系统在安全控制与优化方面的关键问题。重点分析了劳动和交通场景中的安全隐患,指出现有驾驶员监控系统的局限性,并提出应基于车辆运动状态进行安全控制。文章介绍了定位法在非线性、非平稳系统控制中的应用原理,深入剖析了系统稳定性、准确性、快速性与抗干扰能力之间的权衡关系。通过建立闭环控制系统模型,揭示了增益参数对系统稳定性的关键影响,并指出鲁棒性与最优性难以兼得的矛盾。最后,提出了改进控制算法、优化传感器设计和加强系统验证等优化路径,展望了人工智能技术在提升安全系统性能方面的广原创 2025-08-29 12:07:59 · 7 阅读 · 0 评论 -
46、二氧化铀粉末造粒厂的异常检测与人工智能安全应用
本文介绍了一种基于长短期记忆网络(LSTM)的异常检测方法在二氧化铀粉末造粒厂中的应用。通过收集磨机转速、电流、温度等多维传感器数据,并结合数据预处理技术生成变异性指数和温度差参数,构建了12个特征输入的Vanilla LSTM模型,实现对设备运行状态的精准预测。利用预测残差作为健康指标,结合累积误差平滑处理与上控制限(UCL)判断机制,能够在故障发生前至少四个月检测到早期异常。该方案相比传统阈值法显著提升了检测性能,减少了紧急停机和维修成本,并具备良好的可复制性,适用于核工业及其他领域的预测性维护系统。此原创 2025-08-28 16:37:49 · 10 阅读 · 0 评论 -
45、软件凝聚团队搜索及二氧化铀造粒厂异常检测研究
本研究围绕两个关键技术领域展开:一是基于GitHub数据的软件凝聚团队搜索,提出融合语言变量与模糊推理规则的团队评估模型,并开发模块化软件系统实现团队推荐与评级;二是针对核燃料生产中的二氧化铀造粒厂,应用LSTM算法进行时间序列异常检测,支持预测性维护。研究验证了聚类算法提升搜索效率15%,并构建了可实时可视化设备状态的故障检测系统,显著降低停机与运维成本。未来方向包括优化计算速度、扩展软技能变量及多传感器融合深度学习模型。原创 2025-08-27 09:42:41 · 7 阅读 · 0 评论 -
44、软件项目智能仓库构建与软件开发团队搜索方法
本文介绍了软件项目智能仓库的信息检索方法与软件开发有凝聚力团队的搜索模型。通过构建基于上下文和开发过程特征的索引模型,提升项目仓库检索质量达70%;同时提出一种结合图采样、聚类与模糊推理的团队搜索与评估方法,可在专业社交网络中高效识别高凝聚力开发团队。该方法支持人力资源经理快速组建适配项目需求的开发团队,并通过语言变量和可扩展规则实现灵活的团队互动评估。未来将融合AI技术、完善指标体系并拓展至多平台应用,推动软件开发效率与团队管理的智能化发展。原创 2025-08-26 14:05:12 · 8 阅读 · 0 评论 -
43、构建软件项目智能仓库的方法
本文提出了一种构建软件项目智能仓库的方法,旨在通过结合上下文、设计工件和开发过程特征来提升软件项目的搜索质量。该方法将软件项目表示为包含实体、业务流程和项目指标的结构化模型,并基于图数据库构建搜索索引。通过分析源代码中的抽象语法树(AST)提取上下文实体与业务流程,同时从版本控制历史中提取开发者数量、提交次数等开发过程指标。最终利用Cypher查询语言实现对项目的精准检索,并根据查询中指定的实体、流程和指标评估相似度,从而有效支持最佳实践的挖掘与复用。原创 2025-08-25 13:26:49 · 8 阅读 · 0 评论 -
42、基于随机森林预测燃烧器的最佳运行及智能软件项目库构建
本文探讨了基于随机森林算法的燃烧器最佳运行模式预测方法,并构建了清洁能源技术的可训练数字孪生平台。通过结合数值模拟与机器学习插件,在STAR-CCM+环境中对GMU-45燃烧器和TGME-464锅炉进行建模与仿真,验证了烟气再循环对降低NOx排放的有效性。同时,提出了一种智能软件项目库的构建方法,涵盖信息检索模块设计、项目模型建立、索引机制及相关性计算,旨在提升软件开发效率与质量。该研究为能源领域的低排放燃烧技术和软件工程中的知识复用提供了创新解决方案。原创 2025-08-24 09:09:37 · 7 阅读 · 0 评论 -
41、基于智能分析的社会经济可持续性监测与燃烧器优化运行预测
本文探讨了基于智能分析的社会经济可持续性监测模型与基于随机森林的燃烧器最优运行预测模型。前者通过整合发病率与社交媒体舆论数据,构建动态关系图谱,支持医疗系统决策;后者结合数学建模与机器学习,优化燃烧器运行参数,提升能源效率并减少排放。两种模型分别在社会管理和清洁能源领域展现出显著应用价值,并展望了数据多元化、实时预警、深度学习和智能控制集成等未来发展方向。原创 2025-08-23 15:47:21 · 10 阅读 · 0 评论 -
40、基于智能分析的社会经济可持续性监测
本文提出了一种基于智能分析的社会经济可持续性监测模型,利用社交网络和即时通讯工具的数据,构建包含因素相互影响与隐藏模式的有向图模型。通过定义顶点与弧的属性,结合神经网络与改进的相关性计算方法,实现对社会满意度和社会福祉的量化评估。模型支持可视化分析,可应用于政策制定、城市规划与企业决策,并具备向多领域拓展和实时预警的潜力。原创 2025-08-22 10:34:15 · 7 阅读 · 0 评论 -
39、激光增材制造智能支持与社会经济可持续性监测
本文探讨了激光增材制造(LBAM)智能支持系统与社会经济可持续性监测的模型与应用。LBAM知识门户通过基于本体的专业编辑器和智能决策支持系统(DSS),结合演绎、类比与归纳推理方法,提升工艺效率并降低成本;而社会经济可持续性监测则利用社交媒体数据与神经网络技术,构建多因素关联模型,实现对社会福祉的实时评估。两者均依托智能算法与大数据分析,在工业制造与公共管理领域展现出重要价值与应用前景。原创 2025-08-21 10:39:24 · 7 阅读 · 0 评论 -
38、激光增材制造过程工程师智能支持的概念
本文提出了一种面向激光增材制造(LBAM)过程工程师的智能支持云知识门户架构。该系统基于两级本体技术,集成了知识工程、类比推理(CBR)、归纳数据泛化与热力学过程数学建模等多种方法,构建了包含本体、参考书、知识库、案例数据库和数学模型数据库在内的综合信息资源体系。通过本体驱动的编辑器和混合智能决策支持系统,实现对工艺参数设置的高效辅助决策,提升决策准确性、降低培训成本、促进知识共享,并具备良好的可扩展性。该知识门户在智能制造、新材料研发和绿色制造方面具有广阔应用前景。原创 2025-08-20 15:31:25 · 13 阅读 · 0 评论 -
37、基于连通组件的3D伪影定位方法
本文提出了一种基于高斯混合模型(GMM)和3D连通组件分析的CT图像伪影定位方法。通过GMM近似每张图像的像素强度分布,并以最右侧高斯分量的均值作为自适应二值化阈值,结合3D连通组件分析与体积过滤,有效区分金属伪影、骨骼与噪声。实验结果表明,该方法在两个案例研究中显著提升了Jaccard分数,分别从0.247提升至0.996、0.561提升至0.943,优于传统全局阈值法。同时讨论了当前方法在骨骼分离及伪影与骨骼邻近情况下的局限性,并提出了可能的改进方向,如引入形态学操作或机器学习策略。原创 2025-08-19 10:41:36 · 8 阅读 · 0 评论 -
36、基于计算机视觉的跑步机管理与医学影像伪影定位技术
本文介绍了基于计算机视觉的跑步机管理与医学影像中3D伪影定位两项技术的应用与研究。在跑步机管理方面,采用Python结合OpenCV和MediaPipe实现人体姿态识别与位置跟踪,并通过自研神经网络分类站立、行走和摔倒状态,实现实时安全控制。系统在1920×1080分辨率下达到约30帧/秒的处理性能,具备高灵活性、信息完整性与安全性。在医学影像领域,提出一种基于高斯混合模型与3D连通分量分析的伪影定位方法,显著提升Jaccard分数,有效减少金属伪影对CT图像的干扰。文章进一步探讨了两类技术的优势、挑战及未原创 2025-08-18 09:34:44 · 8 阅读 · 0 评论 -
35、社交媒体用户心理特征表达估计中的深度机器学习技术
本文提出了一种基于社交媒体用户头像图像自动评估其心理防御机制表达程度的新方法,旨在通过深度机器学习技术分析用户在VK社交网络中的头像,预测其个性特征与脆弱性。研究采用MTCNN进行面部检测,并利用EmoPy卷积神经网络结合迁移学习对小样本数据进行训练,最终模型准确率超过基线两倍以上,验证了头像图像与心理特征之间的相关性假设。该方法在信息安全、市场营销和社交平台管理等领域具有广泛的应用前景,同时也为跨学科的用户行为分析提供了新的技术路径。原创 2025-08-17 15:17:19 · 8 阅读 · 0 评论