二级指针是什么???
可以先通过以下代码感知一下二级指针是什么?
int main(){
int arr[5] = {1, 2, 3, 4, 5};
int* parr = &arr[0]; //也可以直接写数组名arr
int* *pparr = &parr; //二级指针,指针的指针,一般希望修改函数中的指针时会用到
printf("%d\n", *(arr + 3)); //arr[3]
printf("%d\n", *(*pparr + 3)); //(*ppar)[3]
return 0;
}
平时见到的(一级)指针是普通变量的指针,而这里的二级指针就是一级指针的指针。
如上图所示,a为普通变量,p1为指向a的指针,p2为指向p1的指针,也就是我们关注的二级指针。
二叉树的创建
请着重关注下列代码中
- A.先序建立二叉树(无返回值版本) 及主函数中二级指针版二叉树构造方法
- B.先序建立二叉树(有返回值版) 及主函数中一级指针版二叉树构造方法
请仔细对比A和B段代码的区别,并实际运行以下,你将收获匪浅。
#include <stdio.h>
#include <malloc.h>
typedef char BiElemType;
typedef struct BTNode{
BiElemType data; //数据域
struct BTNode * pLchild;
struct BTNode * pRchild;
}BTNode, * BiTree;
/*
使用二级指针的原因:
1.若要通过函数B修改函数A中的某个变量a。需要获得变量a的地址,如果
a是普通变量,需要获得一级指针。如果a是指针,需要获得二级指针。
2.root需要指向一个新插入的节点,也就是需要修改root的值。所以 应该传入指向root的地址。
3.如果仅使用一级指针,那么只能改变形参的内存,如,root = malloc(sizeof(struct TreeNode));
这个root和函数外的实参的内存空间不同,所以修改它并不会对实参的内存造成影响,
所以必须把它做为返回值返回去,否则函数外就没法获得这个变化的值。
*/
/*
A.先序建立二叉树(无返回值版本)
需要在main函数中定义一个根节点
注意这是个二叉树节点的指针类型;然后将这个参数
传递给一个CreateBTree函数;在该函数中递归创建二叉树
*/
void CreateBTree(BiTree * root){ //二级指针(BiTree本身就是指针)
char c;
scanf("%c", &c); //接受一个字符
if(c == '#'){ //遇到#
*root = NULL; //将此节点置为空
}else{ //从函数外部接受root(二级指针的形式)并在函数内部进行修改
(*root) = (BiTree)malloc(sizeof(BTNode)); //创建一个新的节点
(*root)->data = c;
CreateBTree(&(*root)->pLchild); //沿左子树继续创建
CreateBTree(&(*root)->pRchild); //沿右子树继续创建
}
}
/*
B.先序建立二叉树(有返回值版)
可以直接在CreatBiTree函数中创建二叉树,并返回二叉树的根指针
*/
BiTree CreateBTree2(){
char c;
BiTree root = NULL; //在函数内部创建root
scanf("%c", &c); //接受一个字符
if(c == '#'){ //遇到#
root = NULL; //将此节点置为空
return NULL; //必须return NULL
}else{
root = (BiTree)malloc(sizeof(BTNode)); //创建一个新的节点
root->data = c;
root->pLchild = CreateBTree2(); //沿左子树继续创建
root->pRchild = CreateBTree2(); //沿右子树继续创建
return root;
}
}
//先序遍历二叉树
void PreOrderTraverse(BiTree root){
if(root != NULL){
printf("%c", root->data);
PreOrderTraverse(root->pLchild);
PreOrderTraverse(root->pRchild);
}else{
printf("#");
}
}
int main(){
//A.二级指针构造方式
BiTree root = NULL;
CreateBTree(&root);
PreOrderTraverse(root);
//B.一级指针构造方式
BiTree root = CreateBTree2();
PreOrderTraverse(root);
return 0;
}