POJ 2485 Highways 最小生成树

Prim小练习2

题目大意:

有n个农场,给出一个n*n的矩阵,第 i 行 j 列代表农场 i 到农场 j 的距离

求一个最小生成树连接所有农场,输出最小生成树中最大的边的边权值(由于本身最小生成树选取的边就满足了尽量使得使用的边的边权值小(从Kruskal的边的排序中明显看出))


很简单的最小生成树问题

两种算法做法如下:

Kruskal 算法:

Result  :  Accepted     Memory  :  500 KB     Time  :  235 ms

/*
 * Author: Gatevin
 * Created Time:  2014/7/16 21:45:23
 * File Name: test.cpp
 */
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;

int T,V,E;
int r[130000];
int f[510];
int u[130000];
int v[130000];
int w[130000];

bool cmp(const int& i, const int& j)
{
    return w[i] < w[j];
}

int get_father(int i)
{
    if(i != f[i])
    {
        f[i] = get_father(f[i]);
    }
    return f[i];
}

int Kruskal()
{
    for(int i = 1; i <= V; i++) f[i] = i;
    for(int i = 1; i <= E; i++) r[i] = i;
    int answer = 0;
    sort(r + 1, r + E + 1, cmp);
    for(int i = 1; i <= E; i++)
    {
        int e = r[i];
        int rx = get_father(u[e]);
        int ry = get_father(v[e]);
        if(rx != ry)
        {
            answer = max(answer, w[e]);
            f[rx] = ry;
        }
    }
    return answer;
}


int main()
{
    scanf("%d",&T);
    int tmp;
    while(T--)
    {
        scanf("%d",&V);
        E = 0;
        for(int i = 1; i <= V; i++)
        {
            for(int j = 1; j <= V; j++)
            {
                scanf("%d",&tmp);
                if(i > j)
                {
                    E++;
                    u[E] = i;
                    v[E] = j;
                    w[E] = tmp;
                    r[E] = E;
                }
            }
        }
        int answer = Kruskal();
        printf("%d\n",answer);
    }
    return 0;
}

Prim算法的做法:

Result  :  Accepted     Memory  :  524 KB     Time  :  204 ms

/*
 * Author: Gatevin
 * Created Time:  2014/7/16 22:24:07
 * File Name: test.cpp
 */
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;

int dis[510];
bool vis[510];
int T,V,tmp;
const int inf = 0x7fffffff;
vector <pair<int, int> > g[510];

int Prim()
{
    memset(vis, 0, sizeof(vis));
    fill(dis + 1, dis + V + 1, inf);
    dis[1] = 0;
    int ans = 0;
    for(int i = 1; i <= V; i++)
    {
        int mark = -1;
        for(int j = 1; j <= V; j++)
        {
            if(!vis[j])
            {
                if(mark == -1)
                {
                    mark = j;
                }
                else
                {
                    if(dis[j] < dis[mark])
                    {
                        mark = j;
                    }
                }
            }
        }
        if(mark == -1) break;
        vis[mark] = -1;
        ans = max(ans, dis[mark]);
        for(int j = 0; j < g[mark].size(); j++)
        {
            if(!vis[g[mark][j].first])
            {
                int x = g[mark][j].first;
                dis[x] = min(dis[x], g[mark][j].second);
            }
        }
    }
    return ans;
}

int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&V);
        for(int i = 1; i <= V; i++)
        {
            for(int j = 1; j <= V; j++)
            {
                scanf("%d",&tmp);
                if(i > j)
                {
                    g[i].push_back(make_pair(j, tmp));
                    g[j].push_back(make_pair(i, tmp));
                }
            }
        }
        int answer = Prim();
        printf("%d\n",answer);
        for(int i = 1; i <= V; i++)
        {
            if(!g[i].empty())
            {
                g[i].clear();
            }
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值