题目大意:
就是现在对于一棵有向树, 以1为根, 初始的时候每个节点上的硬币数量都是0, 树的结点个数为N <= 100000, 接下来是M <= 10000次操作, 每次操作要么是将所有深度为L的结点上的硬币数量增加一个值, 要么是询问以x为根的子树上的所有节点的硬币数量之和
大致思路:
首先如果对于每次更新操作用树状数组维护暴力执行的话, 对于同一深度的结点数量很多的时候这个复杂度会达到O(N*M*logN)显然是不能接受的, 那么考虑一下分块的思想
首先用时间戳的思想将这棵树映射到一个区间上然后对于每次修改, 当要修改的点数小于sqrt(N)的时候用树状数组维护暴力执行, 否则只是记录这个深度增加了多少, 在每次询问的时候查询树状数组的和, 然后对于查询的子树所在的区间, logN求出各个没有修改的深度对应的点的数量, 那么整体的复杂度是O(sqrt*N)*M*logN)
代码如下:
Result : Accepted Memory : 14488 KB Time : 78 ms
/*
* Author: Gatevin
* Created Time: 2015/8/8 19:45:44
* File Name: Sakura_Chiyo.cpp
*/
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;
#define maxn 100010
#define time tim
vector<int> G[maxn];
vector<int> pos[maxn];
vector<int> large;//存储那些深度拥有的点的个数很多
int dfn[maxn];
int L[maxn], R[maxn];
int time;
int n, m;
int Limit = 1000;
lint s[maxn];
lint C[maxn];
void dfs(int now, int deep)
{
int nex;
L[now] = ++time;
pos[deep].push_back(L[now]);
for(int i = 0, sz = G[now].size(); i < sz; i++)
{
nex = G[now][i];
dfn[nex] = dfn[now] + 1;
dfs(nex, deep + 1);
}
R[now] = time;
return;
}
int lowbit(int x)
{
return x & -x;
}
void add(int x, int d)
{
while(x <= n)
C[x] += d, x += lowbit(x);
return;
}
lint sum(int x)
{
lint ret = 0;
while(x > 0)
ret += C[x], x -= lowbit(x);
return ret;
}
int main()
{
while(~scanf("%d %d", &n, &m))
{
memset(C, 0, sizeof(C));
memset(s, 0, sizeof(s));
for(int i = 0; i <= n; i++) pos[i].clear();
large.clear();
for(int i = 1; i <= n; i++)
G[i].clear();
int u, v;
for(int i = 1; i < n; i++)
{
scanf("%d %d", &u, &v);
G[u].push_back(v);
}
memset(dfn, 0, sizeof(dfn));
time = 0;
dfs(1, 0);
for(int i = 0; i <= n; i++)
if(pos[i].size() > Limit)
large.push_back(i);
while(m--)
{
int op;
scanf("%d", &op);
if(op == 1)
{
int l, y;
scanf("%d %d", &l, &y);
if(pos[l].size() <= Limit)
for(int i = 0, sz = pos[l].size(); i < sz; i++)
add(pos[l][i], y);
else s[l] += y;
}
else
{
int x;
scanf("%d", &x);
int l = L[x], r = R[x];//询问区间[l, r]的和以及要找出所有没有更新的深度的和
lint ans = sum(r) - sum(l - 1);
for(int i = 0, sz = large.size(); i < sz; i++)
ans += (upper_bound(pos[large[i]].begin(), pos[large[i]].end(), r)
- lower_bound(pos[large[i]].begin(), pos[large[i]].end(), l))*s[large[i]];
printf("%I64d\n", ans);
}
}
}
return 0;
}