- 博客(4)
- 收藏
- 关注
原创 Transformer模型
在3080ti 16G显存需要6个小时完成一批次,如果想获得好的效果,需要训练100次以上...三者关联在一起,达到源句子与目标句子勾连(这过程很复杂),然后生成预测句子。2、训练及调整时间成本过高,1000万英文句子+1000万中文句子训练。通过多次迭代修订参数矩阵,使得预测句子不断的逼近标签句子。1、任何一种应用场景的模型,都是其内在规律的表达,1、模型结构复杂细节多,且理论高度集成,理解耗时。3、目标句子词汇位置关系,彼此关联度评分。2、源句子词汇位置关系,彼此关联度评分。1、熟悉源、目标词汇。
2023-08-10 22:00:16 102 1
原创 CNN卷积神经网络模型-03.糖尿病模型
print("训练:总体准确率:"+str(total_acc)+',平均准确率'+str(total_acc/n)+',n='+str(n))#print("训练:总误差:"+str(total_loss)+',平均误差'+str(total_loss/n)+',n='+str(n))print('验证:历史正确率:'+str(min_acc)+',最新正确率:'+str(v_a)+',Loss='+str(v_loss))plt.plot( val_loss_list, label='验证误差')
2023-07-24 21:55:07 869
原创 CNN卷积神经网络模型-02.调参(过拟合)
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) # 图像标准化。transforms.RandomRotation(60,center=(0,0),expand=True),#随机旋转。4、需要数学:微分导数、统计、概率、线性代数等,每调整一个超参,都需要理解数学逻辑。调整lr=1e-3,weight_decay=1e-2,nesterov=True。kernel_size=[3,3]#调整[3,3],[5,5]
2023-07-23 21:28:32 625 1
原创 CNN卷积神经网络模型-01.困惑
但确实如此,不管模型网络多少层, Loss.backward() 及loss_fn.step()短短2句就完成了众多参数的更新。即通过n次迭代使得样本A的概率P(A)逼近目标B的概率P(B)。A特征值提取之后,会通过数学算法转化成分类的概率P(A),由于是有监督训练,目标B的分类概率P(B)已经确定。模型训练完之后,存储了【权重参数、偏置、模型结构】,重新加载模型文件,预测会使用模型及参数提取特征,计算概率,输出判定。所以,在cnn分类模型中,2个概率函数差距如何表达及计算,成为核心关键,常用交叉熵。
2023-07-13 23:20:00 155 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人