pytest测试框架二

pytest fixture用法

fixture的作用

1、定义传入测试用例中的数据集,类似数据参数化的作用

2、配置测试前系统的状态,作用类似setup和teardown的作用,但实际比setup和teardown使用起来更灵活

3、为批量测试提供数据源

fixture的用法

1、自动化用例中初始状态差异化的应用(比setup更灵活)

应用场景:测试用例执行时,有的用例需要登录,有的用例不需要登录,此时,使用原来的setup则无法完成此需求

1、使用fixture,只需要定义一个被fixture装饰的方法,在测试用例中传入fixture方法名称,那么该用例在执行前就要先执行被fixture装饰的方法,代码和运行结果如下:

@pytest.fixture()
def login():
    print("登录操作")

# 需要提前登录
def test_case1(login):
    print("测试用例1")

# 不需要提前登录
def test_case2():
    print("测试用例2")

代码中,login方法上使用了fixture进行装饰:@pytest.fixture()

在用例中,需要调用该login方法的,可以在参数中传入方法名称,那么就可以在用例执行前执行login方法,不需要执行login的,则不用传入,实现了每个用例的各取所需

2、还有一种调用fixture的方式,使用@pytest.mark.usefixtures(string)调用fixture

例如新增一个test_case3(),不使用test_case3(login)方法,可以使用以下装饰器的方法进行调用

@pytest.mark.usefixtures("login")
def test_case3():
    print("测试用例3")

2、自动化用例中数据清除的应用(yield)

上面使用fixture实现了setup的类似功能,那么如何使用fixture实现teardown的功能呢?比如在执行完用例,需要退出登录操作,那么该如何实现?

1、可以在login中使用yield来实现用例执行后的恢复操作,类似teardown功能,在yield后的代码语句就是用例执行后需要执行的操作

@pytest.fixture()
def login():
    print("登录操作")
    yield
    print("退出登录")

3、fixture方法返回数据信息

fixture装饰的方法,可以通过yield语句将数据信息返回

@pytest.fixture()
def login():
    print("登录操作")
    username = "jerry"
    password = "123456"
    yield [username, password]
    print("退出登录")

如何在测试用例中拿到fixture方法的返回数据:在测试用例中直接使用fixture方法的名称即可获取其返回的数据

# 需要提前登录
def test_case1(login):
    print(f"登录的用户信息:{login}")
    print("测试用例1")

在test_case1中调用login的返回信息,运行结果如下:

小结:fixtrue可以模拟setup和teardown,yield之前是setup,之后是teardown,yield相当于一个return功能,需要返回数据时将数据放在yield的后面

4、fixture方法的全局应用:autouse参数

如果当前所有用例均需要进行同一个初始操作,可以使用设置autouse参数值为True,那么所有用例均会调用该方法,也就不需要对用例进行一一设置

用法,在fixture方法上设置autouse=True

@pytest.fixture(autouse=True)
def login():
    print("登录操作")
    username = "jerry"
    password = "123456"
    yield [username, password]
    print("退出登录")

注意点:如果测试用例中有调用fixture方法的返回值,那么用例的参数是需要传入fixture方法名称的,如果不传入,调用返回值不会直接显示值的信息,而是显示一个内存地址

fixture的作用域

function:函数或者方法级别都会调用

class:类级别调用一次

module:模块级别调用一次,就是一个py文件

session:多个文件调用一次,就是执行一次pytest命令就属于一个session

fixture的作用域是通过scope参数进行设置的,scope的默认值为function,取值范围有:function,class,module,package(新版本增加的),session

scope值为function时的作用域:调用了fixture的方法均会执行connectDB函数,没有调用的则不执行connectDB

@pytest.fixture(scope='function')
def connectDB():
    print("\n连接数据库操作")
    yield
    print("\n断开数据库操作")

class TestDemo:
    def test_a(self, connectDB):
        print("测试用例a")

    def test_b(self):
        print("测试用例b")

scope值为class时的作用域:如果测试类中调用了fixture方法connectDB,那么在执行该测试类前和测试类后就会执行connectDB方法

@pytest.fixture(scope='class')

scope值为module时的作用域:如果py文件中调用了fixture方法connectDB,那么在执行该py文件前和文件后会执行connectDB方法

scope值为session时的作用域:如果在这个session中调用了fixture方法connectDB,那么在执行pytest之前和之后会执行connectDB方法

conftest.py的用法

使用场景:在写用例时,可能需要写多个fixture方法,并且也需要共享给其他小伙伴直接使用,如果直接像上上面定义到test的py文件中,不利于共享,那么可以将fixture方法

写入到公共的地方,共享给其他人使用,pytest提供了一个解决方案,就是conftest.py,相当于一个公共模块,并且名称不能改变,只能为conftest.py

在工作目录创建一个conftest.py文件,直接把fixture方法connectDB剪切粘贴到conftest.py文件中,然后直接执行调用了connectDB的测试用例,可以正常执行(不演示了)

conftest.py注意点:

1、名称不能改变

2、conftest.py与需要运行的用例要在同一个package下

3、不需要导入,pytest执行用例时会自动查找

4、所有同目录文件执行前都会执行conftest.py文件

5、全局的配置和前期的工作都可以写在这里

6、在conftest.py文件中有一个公共的登录方法,但实际部分用例用到的登录方法有一些差异,即公共方法在不同场景出现配置不一样,那么可以在新建package下创建新的conftest.py(一个package只能有一个conftest),那么在新建的package下的测试用例调用相同名称的fixture方法,那么就是就近调用fixture方法

fixture方法的参数化

1、通过params参数传入进去,params参数为列表

2、通过ids参数可以自定义参数和用例的名称

3、获取传入的params,只能使用固定的用法获取:request.param

@pytest.fixture(params=[1, 2, 3], ids=['r1', 'r2', 'r3'])
def login(request):
    # 获取传入的params,有固定用法:request.param
    data = request.param
    print("获取测试数据")
    return data

def test_case1(login):
    print("test_case1获取传入的值为login:", login)

运行结果:

pytest常用插件

pip包官网查询网站:https://pypi.org/

可以在官网输入需要查询的pip软件名称,如pytest-rerunfailures,查找后查看该软件的使用说明:如何安装、依赖版本、详细使用说明等

注意:pytest的常用插件在使用之前都要进行安装对应的package包,可以使用pip install安装,也可以直接在pycharm中安装

pytest-rerunfailures 失败重跑

https://pypi.org/project/pytest-rerunfailures/

使用场景:安装该pytest插件后,可以实现失败用例立即重跑的功能,通过该插件可以设置重跑次数和重跑之间的间隔时间

使用方法:

1、在terminal终端输入pytest命令时增加参数设置

pytest -vs --reruns 2 --reruns-delay 3 test_*.py

--reruns 2:失败的用例重跑两次

--reruns-delay 3:失败的用例在间隔3秒后再进行重跑

def test_rerun1():
    assert 1 == 2

def test_rerun2():
    assert 2 == 2

def test_rerun3():
    assert 3 == 2

2、在需要重跑的用例上使用装饰器,可以针对部分失败用例进行重跑,没有使用装饰器但失败的用例不进行重跑

@pytest.mark.flaky(reruns=2, reruns_delay=3)    装饰器代码

pytest-assume 多重校验

使用场景:pytest提供了assert断言进行判断,但如果写了多个assert语句,只要有其中一个assert断言失败,后面的代码就不执行了,但我们希望断言失败了也可以继续执行代码

pytest-assume可以实现多个断言判断,并且断言失败可以把所有代码执行完

使用方法:使用断言时将assert换成pytest.assume()进行断言判断

def test_assume():
    pytest.assume(1 == 2)
    pytest.assume(False == True)

运行结果:在运行日志中打印了两个断言失败,说明所有断言都进行的判断

pytest-ordering 控制用例执行顺序

使用场景:控制用例的执行顺序

使用方法:通过在用例上面添加装饰器

1、使用@pytest.mark.run(order=1),order的值越大,排序越往后

@pytest.mark.run(order=2)
def test_foo():
    assert True

@pytest.mark.run(order=1)
def test_bar():
    assert True

运行顺序为先test_bar后test_foo

2、使用@pytest.mark.first;@pytest.mark.second,值越大,排序越往后

pytest-xdist 分布式并发执行用例

使用场景:测试用例数量大,需要并发执行用例

使用方法:pytest -n numcpus,numcups是只cpu的核数,数值只能低于或者等于cpu的核数,超出会出问题

 

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值