论文阅读
文章平均质量分 95
阅读论文理解总结
GCTTTTTT
hello~
展开
-
《Federated Unlearning via Active Forgetting》论文精读
对机器学习模型隐私的⽇益关注催化了对机器学习的探索,即消除训练数据对数学学习模型影响的过程。这种担忧也出现在联邦学习领域,促使研究⼈员解决==联邦遗忘学习==问题。然⽽,联邦遗忘仍然具有挑战性。现有的遗忘⽅法⼤致可分为两种⽅法,即==精确遗忘和近似遗忘==。⾸先,以分布式⽅式实现精确遗忘(通常依赖于分区聚合框架)在理论上不会提⾼时间效率。其次,现有的联邦(近似)遗忘⽅法存在不精确的数据影响估计、⼤量的计算负担或两者兼⽽有之的问题。为此,该论文提出了⼀种==基于增量学习的新型联邦遗忘框架==,该框架独⽴于特定原创 2023-07-28 17:51:07 · 1164 阅读 · 2 评论 -
《FedCG:Leverage Conditional GAN for ProtectingPrivacy & MaintainingCompetitivePerformance in FL》论文精读
联邦学习(FL)旨在通过让客户端在不分享其私人数据、保护数据隐私的前提下协作建立机器学习模型。最近的一些研究证明了在联邦学习过程中交换的信息会受到基于梯度的隐私攻击,因此,各种隐私保护方法已被采用来阻止此类攻击,保护数据隐私。然而,这些防御性方法要么引入数量级更多的计算和通信开销(例如,同态加密),要么在预测准确性方面导致模型性能大幅下降(例如,使用差分隐私)。论文中提出了FedCG,将条件生成对抗网络与分割学习相结合,实现对数据的有效隐私保护,同时保持有竞争力的模型性能。原创 2023-07-27 16:38:02 · 434 阅读 · 0 评论 -
《Rank-LIME: Local Model-Agnostic Feature Attribution for Learning to Rank》论文精读
《Rank-LIME: Local Model-Agnostic Feature Attribution for Learning to Rank》论文精读理解总结,适合人工智能,机器学习等领域从业者与学习者借鉴与参考原创 2023-04-13 17:58:06 · 376 阅读 · 0 评论