以集群方式运行pyspark

本文介绍了如何将Python环境打包并部署到Spark集群中,以避免在每个节点上单独安装和维护环境。首先,通过Anaconda创建并激活Python虚拟环境,安装所需的依赖。接着,将虚拟环境打包成zip文件并上传到HDFS。最后,修改Spark提交脚本,指定使用HDFS上的虚拟环境执行pyspark任务。这种方法简化了集群维护,提高了可移植性。
摘要由CSDN通过智能技术生成

一、背景说明

  单机执行pyspark(python on spark)非常简单,只要在脚本所在服务器上部署个python环境或Anaconda这种集成运行环境,再通过python3命令执行就完了。

  而想将python提交到spark集群中运行,则有两种方法,一种是在每个spark结点上部署python环境,在spark低版本与python集成没那么完善的时候,集群结点数又不多的情况下,的确可以这么干(实际上我就这么干过),这种方式比较大的优势是每次执行pyspark任务时,不用分发python环境,会比接下来说的第二种方法快那么一丢丢。而缺点就显而易见的,就是太难维护了:python环境增加依赖时,需求每个结点都安装依赖;集群添加新spark结点时,又要另外部署python环境。这不是扯蛋吗?

  在经历了第一种方式的折磨后,终于用上了第二种方法,就是先将python环境打包放到HDFS中,然后稍微修改一下执行脚本,即可方便地以集群的方式执行pyspark脚本了。

  以下以使用Anaconda为例构建python虚拟环境,其他虚拟环境大同小异。

二、构建python虚拟环境

  1、到anaconda官网下载anaconda;(我下载的是Anaconda3-2019.10-Linux-x86_64.sh);

  2. 在该目录下,执行Anaconda3-2019.10-Linux-x86_64.sh ,安装A

要在本地或远程服务器上并行运行Apache PySpark,你需要完成以下几个步骤: 1. **安装PySpark**:首先确保已经安装了PythonSparkPython库。你可以从Spark官方网站下载预编译的PySpark包,或者通过pip安装(例如 `pip install pyspark`)。 2. **配置环境变量**:添加Spark的bin目录到系统的PATH环境变量,以便能够直接在命令行中运行spark-submit等工具。 3. **启动Spark Master**:如果是集群模式,需要启动Spark Standalone master(如果使用YARN、Kubernetes等分布式环境,则对应地启动对应的master)。对于本地开发,可以使用`spark-shell`或`spark-submit`脚本启动。 - 本地模式 (`local[*]`): `spark-submit --master local[4] your_script.py` - 进程模式 (`local`): `spark-submit --master local your_script.py` 4. **编写PySpark程序**:创建一个Python文件(`.py`),使用PySpark API编写处理数据的代码。例如: ```python from pyspark.sql import SparkSession # 创建SparkSession spark = SparkSession.builder.appName('your_app_name').getOrCreate() # 加载数据 data = spark.read.csv("your_data_path", inferSchema=True, header=True) # 数据操作... result = data.groupBy(...).count() # 保存结果 result.write.csv("output_path") # 关闭SparkSession spark.stop() ``` 5. **提交任务**:使用`spark-submit`命令将你的PySpark程序作为作业提交给Master,如: ```bash spark-submit --master spark://localhost:7077 your_script.py ``` 这里的`localhost:7077`是你之前启动的Spark Master的地址和端口。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值