
概率论与数理统计
文章平均质量分 80
Sevan_Li
这个作者很懒,什么都没留下…
展开
-
推断性统计部分(五)---简单回归分析
推断性统计部分(五)—简单回归分析标签(空格分隔): 概率论与数理统计客观世界中普遍存在着变量之间的关系,有确定关系及非确定关系,确定关系是可以直接使用函数关系来表达,比如y=axy=ax之类,现实的例子,如产品单价、销售数量及销售收入的关系,这个关系就可以直接使用前面的函数式来计算的,属于确定关系;非确定关系即所谓的相关关系,我们只知道它们有关,但不能用准确的函数式来定义它。回归分析正是研究相关关原创 2016-12-07 20:01:02 · 8511 阅读 · 0 评论 -
推断性统计部分(四)---简单方差分析
推断性统计部分(四)—简单方差分析标签(空格分隔): 概率论与数理统计方差分析,分为单因素试验方差分析、多因素无重复试验方差分析及多因素试验方差分析三部分。在试验中,考察的指标称为试验指标,影响试验指标的条件称为因素(一般分为可控因素,如温度、剂量;不可控因素,如测量误差),因素所处的状态(状态这个词比较抽象,我所理解的,或许用子因素来描述会更好理解)称为该因素的水平,给出几个例子来说明三个部分的试原创 2016-12-06 13:15:43 · 1572 阅读 · 0 评论 -
推断性统计部分(二)---参数估计
推断性统计部分(二)—参数估计标签(空格分隔): 概率论与数理统计参数估计包含两大部分,点估计及区间估计,点估计,是估计参数点的值,一个确定的值,区间估计就是估计参数的范围。点估计分为矩估计法及最大似然估计法两种,矩估计法的原理就是样本的k阶矩依概率收敛于相应的总体矩,然后建立方程组求解参数;最大似然估计就是利用利用样本的联合分布律建立似然函数,然后对各个参数进行求导得到似然函数的极值点,从而求出参原创 2016-11-28 10:46:11 · 2352 阅读 · 0 评论 -
推断性统计部分(一)---样本与分布的关系及其检验统计量
推断性统计部分(一)—样本与分布的关系及其检验统计量标签(空格分隔): 概率论与数理统计统计除了可以描述随机变量特征之外,还有一个重要作用,推断!这也是为什么把统计分为描述性统计和推断性统计的原因,以我目前的理解,推断性统计的作用在于以小推大,以微观推宏观,不排除后续继续深入学习之后得出新的结论。在我另一篇文章描述性统计(一)—-统计量中,写到过关于样本的一些统计量,在此基础上,增加样本与分布的关系原创 2016-11-26 16:56:35 · 2287 阅读 · 0 评论 -
描述性统计部分(二)----常用概率分布及用处简述
描述性统计部分最大的内容就是各种各样的分布了,各种分布的概率密度,期望,方差,当然还有偏度、峰度什么的,记录一个网址Wikipedia,里面各种分布的各种统计量都非常完整。可以直接点击查找Wikipedia-Distribution PS:它的公式也是用的MathJax来写的,是不是可以,嗯?嘿嘿嘿~尝试用了MathJax来做这个分布表格,字体大小不能调整,表格不能调,真是哔了狗~ 好吧,只能用原创 2016-11-26 12:40:28 · 2343 阅读 · 0 评论 -
描述性统计部分(一)----统计量
描述性统计部分(一)—-统计量标签(空格分隔): 概率论与数理统计1、期望E(X)E(X)又叫均值、加权算术平均值,其计算公式为:E(X)=∑ni=1xin=∑ji=1xi⋅ki∑ji=1ki=∑i=1∞xi⋅pi=∫∞−∞x⋅f(x)dx=∑i=1∞g(yi)⋅pi=∫∞−∞g(y)⋅f(x)dxE(X)=\frac{\sum_{i=1}^nx_i}{n}=\frac{\sum_{i=1}^jx_原创 2016-11-25 14:23:53 · 11694 阅读 · 0 评论 -
--概率论部分总结--
概率论部分总结概念:随机试验: 1、可以在相同条件下重复地进行; 2、每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果; 3、进行一次试验之前不能确定哪一个结果会出现。样本空间&样本点: 某个随机试验的所有可能结果组成的集合,每个结果称之为样本点随机事件: 样本空间的子集,简称事件,当且仅当子集中的一个样本点出现,称为事件发生基本事件: 由一个样本点组成的单点集频率: 进行原创 2016-11-24 20:44:17 · 994 阅读 · 0 评论 -
推断性统计部分(三)---假设检验
推断性统计部分(三)—假设检验标签(空格分隔): 概率论与数理统计假设检验假设检验与置信区间其实是一样意思,区别就是再多做两步工作(假设及判断),仅此而已。 我们先回顾置信区间是计算的 1、判断是否正态总体 2、找到枢轴量(简单的说,就是一个关于随机变量X及参数的函数,它有自己单独的,与变量及参数都无关的分布,这样就可以用过这个分布来确定函数内的参数的置信区间) 3、利用枢轴量的分原创 2016-11-29 11:08:10 · 6331 阅读 · 0 评论 -
R语言实战笔记--第十四章 主成分和因子分析
R语言实战笔记–第十四章 主成分和因子分析标签(空格分隔): R语言 主成分分析 因子分析原理及区别 主成分分析与因子分析很接近,其目的均是为了降维,以更简洁的数据去解释结果,但这两种方法其实是相差甚远,有幸找到一篇博文描述了这两者的不同,主成分分析和因子分析十大不同点【原文连接】,在这里引用(略有更改)一下。 不同点 主成分分析 因子分析 原理 每个主成分均为所有原始变量的线性原创 2017-01-21 10:30:00 · 18856 阅读 · 1 评论