Description
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走。但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了房间A和B,那么既可以通过它从房间A走到房间B,也可以通过它从房间B走到房间A,为了提高难度,小希希望任意两个房间有且仅有一条路径可以相通(除非走了回头路)。小希现在把她的设计图给你,让你帮忙判断她的设计图是否符合她的设计思路。比如下面的例子,前两个是符合条件的,但是最后一个却有两种方法从5到达8。
Input
输入包含多组数据,每组数据是一个以0 0结尾的整数对列表,表示了一条通道连接的两个房间的编号。房间的编号至少为1,且不超过100000。每两组数据之间有一个空行。
整个文件以两个-1结尾。
Output
对于输入的每一组数据,输出仅包括一行。如果该迷宫符合小希的思路,那么输出”Yes”,否则输出”No”。
Sample Input
6 8 5 3 5 2 6 4
5 6 0 08 1 7 3 6 2 8 9 7 5
7 4 7 8 7 6 0 03 8 6 8 6 4
5 3 5 6 5 2 0 0-1 -1
Sample Output
Yes
Yes
No
题目分析
由题目可知这是一个无向的无环图,也就是一棵树,所以只需判断其连通并且点数比边数多一即可。
判断是否连通时使用用并查集。
用数组f[]标记编号是否出现过,cnt1为点数,cnt2为边数。
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<climits>
#include<cstdlib>
#include<ctime>
using namespace std;
const int maxn=1e5+5;
int par[maxn],r[maxn],f[maxn];
int find(int x)
{
return (par[x]==x)?x:(par[x]=find(par[x]));
}
void unite(int x,int y)
{
x=find(x);y=find(y);
if(x==y) return;
if(r[x]<r[y])
par[x]=y;
else
{
par[y]=x;
r[x]+=(r[x]==r[y])?1:0;
}
}
int main()
{
int x,y;
while(true)
{
int cnt1 = 0,cnt2=0,m=0;
bool pd=true;
memset(f,0,sizeof f);
for(int i=1;i<maxn;i++)
{
par[i]=i;
r[i]=0;
}
while((~scanf("%d%d",&x,&y))&&x&&y)
{
cnt2++;
if(find(x)==find(y)) pd=false;//不能break,因为要读完数据
unite(x,y);
if(!f[x])
{
f[x]=true;
cnt1++;
}
if(!f[y])
{
f[y]=true;
cnt1++;
}
m=(x>m)?x:m;
m=(y>m)?y:m;
if((x==-1)&&(y==-1)) return 0;
}
if((cnt2+1!=cnt1)&&cnt1) pd=false;
if(pd) cout<<"Yes\n";
else cout<<"No\n";
}
return 0 ;
}