Deep Learning | 理论太多?呐,实战来袭!

关于新的技术专栏到底要写什么?这个问题困扰了我们的工程师很久。关于深度学习,网络上有太多可以查阅的资料和文献,只要大家肯学,从入门到精通,应有尽有。直到有一天,我们的AI技术交流群中有位小伙伴提出,能不能分享一些实践案例,让有兴趣和时间的小伙伴们可以在实践中学习交流。


这确实是一个好方向。纸上得来终觉浅,绝知此事要躬行。理论知识太多太杂,只是看不实践,很难进行内化和提炼,况且世上本没有什么所谓的大牛,坑踩的多了,便成了。本专栏将通过一些实践项目,从具体的案例入手,和大家一起在实践中交流探讨。


专栏大纲

在专栏的前期阶段,我们将为大家呈现三个计算机视觉方面的实践项目。下面将对这单个项目进行简单的介绍。


利用可视化技术理解神经网络

将介绍如何通过GradCam利用可视化的方法直观地理解卷积神经网络如何工作:



思考:卷积神经网络是如何完成任务的?


基于轻量级网络的目录检测

  • 介绍目标SSD的基本原理

  • 轻量级模型介绍

  • 实现一个通用物体检测器

  • 基于SSD进行人脸检测改进方案与实验

GAN大法及其有趣的应用

  • GAN 的基本原理

  • CycleGAN 实现两个领域的图片互转

  • StarGAN 多个领域之间的图片互转

  • 字体风格迁移

当然,后面我们还会更新一些其他的项目实践,当然很欢迎大家提出一些感兴趣的方向。


专栏特色

宝贵经验加思想碰撞。实践的过程中,肯定会遇到一些问题和思考,这些是作者通过专栏最想和大家分享的。本专栏将把在项目实践过程中遇到的坑,以及如何爬坑等宝贵的经验分享给大家,同时也会在每个项目后面征集建议和思考。比如关于模型优化是否有更好的方法可以实现,或者有其他的方法可以达到同样的效果,又或者还可不可以用同样的方法做更好玩的事情等等。或许,只有在这样的交流碰撞中才能够带来更多的进步。


实践准备

如果有小伙伴感兴趣想要一同实践,那么需要做如下准备:

1、熟悉python编程;

2、熟悉深度学习框架pytorch,这些项目我们将主要基于pytorch进行实验。


如果有相关的建议和想法,欢迎添加我们的技术交流群交流哦~添加技术助理微信入群:geetest1024


阅读更多
个人分类: 深度学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭