Leetcode 63:Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Note: m and n will be at most 100.

Subscribe to see which companies asked this question


//这道题跟 Unique Paths 差不多,只是这道题给机器人加了障碍,不是每次都有两个选择(向右,向下)了。
//因为有了这个条件,所以 Unique Paths 中最后一个直接求组合的方法就不适用了,这里最好的解法就是用动态规划了。
//递推式还是跟 Unique Paths 一样,只是每次我们要判断一下是不是障碍,如果是,则dp[i][j] = 0,
//否则还是dp[i][j] = dp[i - 1][j] + dp[i][j - 1]。
class Solution {
public:
	int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
		int m = obstacleGrid.size(), n = obstacleGrid[0].size();
		if (m== 0 || n == 0)
			return 0;

		vector<int> dp(n);
		dp[0] = 1;
		for (int i = 0; i < obstacleGrid.size(); ++i)
		{
			for (int j = 0; j < obstacleGrid[0].size();++j)
			{
				if (obstacleGrid[i][j] == 1)
					dp[j] = 0;
				else
				{
					if (j>0)   dp[j] = dp[j] + dp[j - 1];
				}
			}
		}
		return dp[n - 1];
	}
};

下面还有一种更容易理解的方法:

class Solution {
public:
	int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
		int i, j, m = obstacleGrid.size(), n = obstacleGrid[0].size();
		vector<vector<int> > dp(m, vector<int>(n, 1));
		if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) {
			return 0;
		}

		//初始化动态规划矩阵dp
		for (i = 0; i < m; i++)
		{
			if (obstacleGrid[i][0] == 0) 
				dp[i][0] = 1;
			else 
				break;
		}
		while (i < m) //某一行有障碍物,则后面所有行都为0
		{
			dp[i][0] = 0;
			i++;
		}

		for (j = 0; j <n; j++) 
		{
			if (obstacleGrid[0][j] == 0) 
				dp[0][j] = 1;
			else 
				break;
		}

		while (j < n) //某一列有障碍物,则后面所以列都为0
		{
			dp[0][j] = 0;
			j++;
		}

		//动态规划核心代码
		for (i = 1; i < m; i++) 
		{
			for (j = 1; j < n; j++) 
			{
				if (obstacleGrid[i][j] == 1) 
					dp[i][j] = 0;
				else 
					dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
			}
		}

		return dp[m - 1][n - 1];
	}
};



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值