多次复制Excel符合要求的数据行:Python批量实现

本文介绍基于Python语言,读取Excel表格文件数据,并基于其中某一列数据的值,将这一数据处于指定范围那一行加以复制,并将所得结果保存为新的Excel表格文件的方法。

  首先,我们来明确一下本文的具体需求。现有一个Excel表格文件,在本文中我们就以.csv格式的文件为例;其中,如下图所示,这一文件中有一列(也就是inf_dif这一列)数据比较关键,我们希望对这一列数据加以处理——对于每一行,如果这一行的这一列数据的值在指定的范围内,那么就将这一行复制一下(相当于新生成一个和当前行一摸一样数据的新行)。

  知道了需求,我们就可以开始代码的书写。其中,本文用到的具体代码如下所示。

# -*- coding: utf-8 -*-
"""
Created on Thu Jul  6 22:04:48 2023

@author: fkxxgis
"""

import pandas as pd

df = pd.read_csv(r"E:\Train_Model.csv")

result_df = pd.DataFrame()
for index, row in df.iterrows():
    value = row["inf_dif"]
    if value <= -0.1 or value >= 0.1:
        for i in range(10):
            result_df = result_df.append(row, ignore_index=True)
    result_df = result_df.append(row, ignore_index=True)

result_df.to_csv(r"E:\Train_Model_Oversampling_NIR_10.csv", index=False)

  其中,上述代码的具体介绍如下。

  首先,我们需要导入所需的库;接下来,我们使用pd.read_csv()函数,读取我们需要加以处理的文件,并随后将其中的数据存储在名为dfDataFrame格式变量中。接下来,我们再创建一个空的DataFrame,名为result_df,用于存储处理后的数据。

  随后,我们使用df.iterrows()遍历原始数据的每一行,其中index表示行索引row则是这一行具体的数据。接下来,获取每一行中inf_dif列的值,存储在变量value中。

  此时,我们即可基于我们的实际需求,对变量value的数值加以判断;在我这里,如果value的值小于等于-0.1或大于等于0.1,则就开始对这一行加以复制;因为我这里需要复制的次数比较多,因此就使用range(10)循环,将当前行数据复制10次;复制的具体方法是,使用result_df.append()函数,将复制的行添加到result_df中。

  最后,还需要注意使用result_df.append()函数,将原始行数据添加到result_df中(这样相当于对于我们需要的行,其自身再加上我们刚刚复制的那10次,一共有11行了)。

  在最后一个步骤,我们使用result_df.to_csv()函数,将处理之后的结果数据保存为一个新的Excel表格文件文件,并设置index=False,表示不保存行索引。

  运行上述代码,我们即可得到结果文件。如下图所示,可以看到结果文件中,符合我们要求的行,已经复制了10次,也就是一共出现了11次。

  至此,大功告成。

Python中,将Excel数据批量导入数据库通常涉及几个步骤,使用pandas库读取Excel文件,然后通过SQLAlchemy等库连接并操作数据库。以下是一个简单的流程概述: 1. **安装必要的库**: 首先,需要安装`pandas`(用于处理Excel数据),`openpyxl`(处理xlsx/xls文件)以及数据库适配器(如`sqlite3`, `psycopg2`针对PostgreSQL,`pymysql`针对MySQL等)。可以使用`pip install pandas openpyxl sqlalchemy $database_adapter`命令安装。 2. **读取Excel文件**: 使用`pandas.read_excel()`函数从Excel文件中加载数据到DataFrame对象,例如: ```python import pandas as pd data = pd.read_excel('input.xlsx') ``` 3. **准备数据库连接**: 根据所选择的数据库(比如SQLite、MySQL或PostgreSQL),创建相应的连接和游标。例如,使用SQLite: ```python from sqlalchemy import create_engine engine = create_engine('sqlite:///output.db') # 输出到SQLite数据库 ``` 4. **数据清洗和预处理**: 检查数据质量,可能需要处理缺失值、转换数据类型等。如果有必要,对DataFrame进相应操作。 5. **插入数据数据库**: 将DataFrame转换为SQL表结构,并分批次(如按或块)插入数据。这里通常会使用`to_sql()`函数,例如: ```python data.to_sql('table_name', con=engine, if_exists='append', index=False) ``` 或者手动构造SQL INSERT语句。 6. **错误处理和日志记录**: 为了防止数据丢失和调试方便,记得添加适当的异常处理和日志记录。 7. **执批量操作**: 可能需要多次循环,每次处理一部分数据,直到所有数据都插入完毕。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

野生的狒狒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值