深度学习
gefeng1209
这个作者很懒,什么都没留下…
展开
-
深度学习花书阅读笔记-chapter02
第二章 线性代数2.1 标量、向量、矩阵和张量标量(scalar):一个数 向量(vector):一列数 矩阵(matrix):二维数组 张量(tensor):多维数组(n>=3) 矩阵的每一行可以看做是一个向量,因此向量要能够与矩阵相加,必须满足向量元素个数等于矩阵列数2.2 矩阵和向量相乘向量点积(dot product)的结果是一个标量 注意矩阵乘积(matri...原创 2019-02-01 22:16:43 · 347 阅读 · 0 评论 -
深度学习花书阅读笔记-chapter03
第三章 概率与信息论3.1 为什么要使用概率?机器学习通常必须处理不确定量,有时也可能需要处理随机(非确定性的) 量 不确定性有三种可能的来源:被建模系统内在的随机性 不完全观测 不完全建模频率派概率(frequentist probability):直接与事件发生的频率相联系,例如,像在扑克牌游戏中抽出一手特定的牌这种事件的研究中,是如何使用的。这类事件往往是可以重复的。当我们...原创 2019-02-22 22:29:21 · 312 阅读 · 0 评论 -
深度学习花书阅读笔记-chapter04
第四章 数值计算4.1 上溢和下溢下溢(underflow):当接近零的数被四舍五入为零时发生下溢 上溢 (overflow):当大量级的数被近似为 ∞ 或 −∞ 时发生上溢4.2 病态条件条件数表明函数相对于输入的微小变化而变化的快慢程度。输入被轻微扰动而 迅速改变的函数对于科学计算来说是可能是有问题的,因为输入中的舍入误差可能 导致输出的巨大变化。 这是最大和最小特征...原创 2019-02-26 13:31:12 · 258 阅读 · 0 评论 -
tensorflow中常用的变量初始化方法
1. 初始化为常量tf.constant_initializer__init__( value=0, #指定的常量 dtype=tf.float32, #数据类型 verify_shape=False #是否可以调整tensor的形状,默认可以调整)#常量初始化#tf.constant_initializerva...原创 2019-05-03 13:50:28 · 3749 阅读 · 0 评论 -
超参数搜索
1.超参数搜索为什么要超参数搜索???超参数:在神经网络训练过程中不变的参数网络结构参数:层数,每层宽度,每层激活函数等 训练参数:batch_size,学习率,学习率衰减算法等超参数搜索可以缓解手工设置超参数的时间耗费搜索策略网格搜索 定义n维网格 每个网格对应一组超参数 一组一组尝试参数 随机搜索 参数的生成方式为随机 可探索的空间更大 ...原创 2019-07-20 22:55:15 · 2859 阅读 · 1 评论 -
模型性能估计(计算量篇)
在移动设备上进行深度学习时,模型预测的好坏并不是唯一的考虑因素。你还需要担心:模型在应用程序包中占用的空间量- 单个模型有可能为应用程序的下载大小增加100个MB 它在运行时占用的内存量- 在iPhone和iPad上,GPU可以使用设备中的所有RAM,但这仍然只有几GB,当你的可用内存耗尽时,应用程序会被操作系统终止 模型运行的速度有多快- 特别是在使用实时视频或大图像时(如果模型需要几...转载 2019-07-22 18:39:31 · 2261 阅读 · 0 评论