对于本道题目,我们考虑用二分答案来枚举锯片的最高高度
为什么?
因为我们不难发现,随着锯片高度的升高,我们所得到的木头的材料是减少的,它们之间存在随着锯片高度升高,得到的木材材料递减的关系。满足单调性,这个时候,我们就可以考虑用二分答案来枚举答案的正确性。
对于具体问题,我们来分析具体的check函数 和l和r的变化
check函数
我们二分答案,枚举的是答案,题目中说他至少得到m米的木材,那我们每次都判断在这个锯片的高度下,每一次据木头,得到的木材有多少米。
对于模板中 l和r的变化
- 如果得到的木材长度大于m,就说明锯片的高度太矮了,还可以提高,那么就令l = mid
- 否则就说明锯片太高了,需要减少锯片的高度,就让r = mid - 1;
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1e6+10;
ll a[N];
int n,m;
bool check(int mid){
ll sum = 0;
for(int i=1;i<=n;i++){
if(a[i]>mid) sum+=a[i]-mid;
}
return (sum>=m);
}
int main() {
ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
cin>>n>>m;
ll Max=0;
for(int i=1;i<=n;i++) {
cin>>a[i];
Max=max(Max,a[i]);
}
ll l=1,r=Max;
while(l < r){
ll mid = l + ((r - l + 1)>>1);
if(check(mid)) l = mid;
else r = mid - 1;
}
cout<<l<<'\n';
return 0;
}
为什么让mid = l+r+1/2的原因,详细看以下介绍
算法基础之二分及二分答案-CSDN博客https://blog.csdn.net/gege_0606/article/details/139041886?spm=1001.2014.3001.5502
一样的思路,来试试水吧~,值得注意的是
这里需要mid的值不能为0,还有当长度为1的时候通过判断是否是false来决定是否输出0;
P2440 木材加工 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)https://www.luogu.com.cn/problem/P2440
#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 1e5+10;
ll a[N];
int n, k;
bool check(ll mid) {
if (mid == 0) return false; // 防止除以0
ll sum = 0;
for (int i = 1; i <= n; i++) {
sum += a[i] / mid;
}
return sum >= k;
}
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin >> n >> k;
ll Max = 0;
for (int i = 1; i <= n; i++) {
cin >> a[i];
Max = max(Max, a[i]);
}
ll l = 1, r = Max;
while (l < r) {
ll mid = l + (r - l + 1) / 2;
if (check(mid)) {
l = mid;
} else {
r = mid - 1;
}
}
// 防止无解的情况,即当最小可能长度为1时,如果check(1)为false,表示无解
cout << (check(l) ? l : 0) << '\n';
return 0;
}