一、判断一个数是否为对称三位数素数
素数是指只能被1和本身整除的自然数(1不是素数)。关键是判断一个数是否为素数。
bool isPrime(int);
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("D:\\in.txt", "r", stdin);
freopen("D:\\out.txt", "w", stdout);
#endif
int n(0);
while (cin >> n)
{
cout <<(n > 100 && n < 1000 && n / 100 == n % 10 && isPrime(n)? "Yes\n" : "No\n");
}
return 0;
}
//判断一个数是否为素数
bool isPrime(int a)
{
int sqr = sqrt(a);
for (int i = 2; i <= sqr; i++)
{
if (0 == a%i)
{
return false;
}
}
return true;
}
二、完数
source: HDOJ 1406
Problem Description
完数的定义:如果一个大于1的正整数的所有因子之和等于它的本身,则称这个数是完数,比如6,28都是完数:6=1+2+3;28=1+2+4+7+14。
本题的任务是判断两个正整数之间完数的个数。
本题的任务是判断两个正整数之间完数的个数。
Input
输入数据包含多行,第一行是一个正整数n,表示测试实例的个数,然后就是n个测试实例,每个实例占一行,由两个正整数num1和num2组成,(1<num1,num2<10000) 。
Output
对于每组测试数据,请输出num1和num2之间(包括num1和num2)存在的完数个数。
Hint:
本题限时1S。先把小于10000的完数计算出来,放到向量中,然后用num1和num2为上下界去查找它们之间完数的个数。
注意:num1可能大于num2,此时必须交换二者的次序。
这个算法不会超时。
#include<iostream>
#include<fstream>
#include<vector>
#include<string>
#include<queue>
#include<iterator>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<numeric>
using namespace std;
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("D:\\in.txt", "r", stdin);
freopen("D:\\out.txt", "w", stdout);
#endif
vector<int> coll;
int sum(0);
for (int i = 2; i < 10000; i = i + 2)
{
sum = 1;
for (int j = 2; j <=i / 2; j++)
{
if (0 == i%j)
{
sum += j;
}
}
if (sum == i)
{
coll.push_back(i);
}
}
int n(0);
int a(0), b(0);
while (cin >> n)
{
for (int i = 0; i < n; i++)
{
cin >> a >> b;
if (a>b)
{
swap(a, b);
}
cout << distance(lower_bound(coll.begin(), coll.end(), a), upper_bound(coll.begin(), coll.end(), b))<<endl;
}
}
return 0;
}
三、九位以内的对称素数
Problem Description:
判断一个数是否为对称且不大于九位数的素数。
Hint:
判断一个数是否为素数比较简单,但是判断一个九位以内的数是否对称可能比较麻烦。这里我采用的方法是先把整数转化成字符串,然后反转字符串,判断二者是否相等,这样就能很轻松的判断是一个数是否对称。
代码如下:
#include<iostream>
#include<fstream>
#include<set>
#include<string>
#include<queue>
#include<set>
#include<iterator>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<numeric>
using namespace std;
bool isPrime(int);
bool isSym(int);
int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("D:\\in.txt", "r", stdin);
freopen("D:\\out.txt", "w", stdout);
#endif
int n(0);
while (cin >> n)
{
if (isPrime(n) && isSym(n))
{
cout << "Yes!" << endl;
}
else
{
cout << "No!" << endl;
}
}
return 0;
}
bool isPrime(int n)
{
for (int i = 2; i <= sqrt(n); i++)
{
if (0 == n%i)
{
return false;
}
}
return true;
}
bool isSym(int n)
{
string str;
string src;
char ss[6];
sprintf(ss, "%d", n);
str = ss;
src = ss;
reverse(str.begin(),str.end());
if (src == str)
{
return true;
}
return false;
}