ACM中的一些基础题

一、判断一个数是否为对称三位数素数

素数是指只能被1和本身整除的自然数(1不是素数)。关键是判断一个数是否为素数。

bool isPrime(int);
int main()
{
    #ifdef ONLINE_JUDGE
    #else
        freopen("D:\\in.txt", "r", stdin);
        freopen("D:\\out.txt", "w", stdout);
    #endif
        int n(0);
        while (cin >> n)
        {
            cout <<(n > 100 && n < 1000 && n / 100 == n % 10 && isPrime(n)? "Yes\n" : "No\n");
        }

    return 0;
}
//判断一个数是否为素数
bool isPrime(int a)
{
    int sqr = sqrt(a);
    for (int i = 2; i <= sqr; i++)
    {
        if (0 == a%i)
        {
            return false;
        }
    }
    return true;
}

二、完数

   source: HDOJ 1406

Problem Description
完数的定义:如果一个大于1的正整数的所有因子之和等于它的本身,则称这个数是完数,比如6,28都是完数:6=1+2+3;28=1+2+4+7+14。

本题的任务是判断两个正整数之间完数的个数。
 

Input
输入数据包含多行,第一行是一个正整数n,表示测试实例的个数,然后就是n个测试实例,每个实例占一行,由两个正整数num1和num2组成,(1<num1,num2<10000) 。
 

Output
对于每组测试数据,请输出num1和num2之间(包括num1和num2)存在的完数个数。

Hint:

本题限时1S。先把小于10000的完数计算出来,放到向量中,然后用num1和num2为上下界去查找它们之间完数的个数。

注意:num1可能大于num2,此时必须交换二者的次序。

这个算法不会超时。

#include<iostream>
#include<fstream>
#include<vector>
#include<string>
#include<queue>
#include<iterator>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<numeric>
using namespace std;
int main()
{
    #ifdef ONLINE_JUDGE
    #else
        freopen("D:\\in.txt", "r", stdin);
        freopen("D:\\out.txt", "w", stdout);
    #endif
        vector<int> coll;
        int sum(0);
        for (int i = 2; i < 10000; i = i + 2)
        {
            sum = 1;
            for (int j = 2; j <=i / 2; j++)
            {
                if (0 == i%j)
                {
                    sum += j;
                }
            }
            if (sum == i)
            {
                coll.push_back(i);
            }
        }
        int n(0);
        int a(0), b(0);
        while (cin >> n)
        {
            for (int i = 0; i < n; i++)
            {
                cin >> a >> b;
                if (a>b)
                {
                    swap(a, b);
                }
                cout << distance(lower_bound(coll.begin(), coll.end(), a), upper_bound(coll.begin(), coll.end(), b))<<endl;
            }
        }
        return 0;
}

三、九位以内的对称素数

Problem Description:

判断一个数是否为对称且不大于九位数的素数。

Hint:

判断一个数是否为素数比较简单,但是判断一个九位以内的数是否对称可能比较麻烦。这里我采用的方法是先把整数转化成字符串,然后反转字符串,判断二者是否相等,这样就能很轻松的判断是一个数是否对称。

代码如下:

#include<iostream>
#include<fstream>
#include<set>
#include<string>
#include<queue>
#include<set>
#include<iterator>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<numeric>
using namespace std;
bool isPrime(int);
bool isSym(int);
int main()
{
    #ifdef ONLINE_JUDGE
    #else
        freopen("D:\\in.txt", "r", stdin);
        freopen("D:\\out.txt", "w", stdout);
    #endif
        int n(0);
        while (cin >> n)
        {
            if (isPrime(n) && isSym(n))
            {
                cout << "Yes!" << endl;
            }
            else
            {
                cout << "No!" << endl;
            }
        }
        return 0;
}
bool isPrime(int n)
{
    for (int i = 2; i <= sqrt(n); i++)
    {
        if (0 == n%i)
        {
            return false;
        }
    }
    return true;
}
bool isSym(int n)
{
    string str;
    string src;
    char ss[6];
    sprintf(ss, "%d", n);
    str = ss;
    src = ss;
    reverse(str.begin(),str.end());
    if (src == str)
    {
        return true;
    }
    return false;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值