POJ 1163 The Triangle

题目链接:http://poj.org/problem?id=1163


Hint:   

入门DP问题。我是采用记忆化搜索的方法来求解的。

定义状态d[i][j]表示从位置(i,j)出发能得到的最大和(根结点是(0,0))。在这个状态定义下,原问题

的解是d(0,0).下面来看状态是怎么转移的。从(i,j)出发,有两种走法。如果向左走,则走到(i+1,j)

需要求“从(i+1,j)出发后能得到的最大和”这一问题,即d[i+1][j].类似地,往右走之后需要求解

d[i+1][j+1],由于可在这两个决策中自由选择,所以应选择d(i+1,j),d(i+1,j+1)中较大的一个。

换句话说,得到了所谓的状态转移方程:

        d(i,j)=f[i][j]+ max(d(i+1,j),d(i+1,j+1)))

如果向左走,那么最好情况等于(i,j)的值f[i][j]与“从(i+1,j)出发的最大和”之和,这里需要注意

“最大”二字。如果连“从(i+1,j)出发走到底部”这部分的和都不是最大的,那么加上f[i][j]之后的

和肯定也不是最大的。这个性质称为最优子结构(optimal substructure),也可以描述为“全局最优解

包含局部最优解”。不管怎样,状态和状态转移方程一起完整地描述了具体的算法。

其实,动态规划的核心也正是 状态和状态转移方程。

代码如下:

#include<iostream>
#include<fstream>
#include<vector>
#include<string>
#include<map>
#include<iterator>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<sstream>
using namespace std;
int f[100][100];    //各个结点的值
int d[100][100];   //保存从(i,j)出发走到底部的最大值
int dp(int i, int j, int n);
int main()
{
    #ifdef ONLINE_JUDGE
    #else
        freopen("D:\\in.txt", "r", stdin);
        freopen("D:\\out.txt", "w", stdout);
    #endif // ONLINE_JUDEG
        int n(0);
        cin >> n;
        for (int i = 0; i < n; i++)
            for (int j = 0; j <= i; j++)
            {
                cin >> f[i][j];
            }
        memset(d, -1, sizeof(d));
        cout << dp(0, 0, n) << endl;
        return 0;
}
//这里是核心,要仔细理解,特别是边界条件的处理
int dp(int i, int j, int n)
{
    if (d[i][j] >= 0)
    {
        return d[i][j];
    }
    return d[i][j] = f[i][j] + (i == n ? 0 : max(dp(i+1,j,n),dp(i+1,j+1,n)));
}

另外一种做法:用递推计算(需再次注意边界处理)

自底向上,d[i][j]保存从底部到d[i][j]的所有可能路径的和的最大值,那么d[i][j]就等于下面两个分支的d[i+1][j], d[i+1][j+1]的最大值。

求解过程:

             7

          3   8

       8  1   0

    2  7   4   4

 4  5   2   6   5

 

第一步:

          7

      3   8

     8  1   0

7  12  10  10              从这一行开始,根据下一行值确定此行最大和

第二步:

             7

          3   8

      20 13  10

   7  12  10  10

  4  5   2   6   5

 

第三步:

                 7

           23  21

         20 13  10

      7  12  10  10

    4  5   2   6   5

 

第四步:

 

             30 <----------  (最大和值7+23)

         23  21

      20 13  10

     7  12  10  10

   4  5   2   6   5

代码如下:

#include<iostream>
#include<fstream>
#include<vector>
#include<string>
#include<map>
#include<iterator>
#include<algorithm>
#include<numeric>
#include<cmath>
#include<sstream>
using namespace std;
int f[100][100];    //各个结点的值
int d[100][100];   //保存从(i,j)出发走到底部的最大值
int main()
{
    #ifdef ONLINE_JUDGE
    #else
        freopen("D:\\in.txt", "r", stdin);
        freopen("D:\\out.txt", "w", stdout);
    #endif // ONLINE_JUDEG
        int n(0);
        cin >> n;
        for (int i = 0; i < n; i++)
            for (int j = 0; j <= i; j++)
            {
                cin >> f[i][j];
            }
        memset(d, -1, sizeof(d));
        for (int j = 0; j < n; j++)
        {
            d[n - 1][j] = f[n - 1][j];
        }
        for (int i = n - 2; i >= 0; i--)
            for (int j = 0; j <= i;j++)
            {
                d[i][j] =f[i][j]+ max(d[i + 1][j], d[i + 1][j + 1]);
            }
        cout << d[0][0] << endl;
        return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值