自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

原创 Diffusion Policy学习手记(下篇):从过拟合迷思到神经网络学习本质的深度顿悟

回到我的Diffusion Policy训练中,模型的参数规模足以拟合“产线所有场景的动作规则”,但我的数据集却没有覆盖到“工件位置偏差、光照变化”的全部情况。模型的“脑力”过剩,只能去记忆训练样本里的噪声细节——比如某张工件图片的反光点、某次专家操作的偶然抖动,这些无关细节反而成了模型判断的依据。这就是典型的过拟合。在对过拟合和正则化的思考基础上,我逐渐提炼出一套自己的理论框架,触碰到了神经网络学习的本质:现实世界是一套可缩放粒度的规则系统,而神经网络的核心作用,就是匹配任务所需的规则粒度。

2026-01-16 00:39:14 351

原创 Diffusion Policy学习手记(上篇):聚焦训练流程——从Batch梯度更新到采样策略的解惑之路

解决了梯度更新的问题,新的疑问又来了:我的数据集包含1000个产线作业的完整episode,每个episode里有若干组“2帧图像+状态+16步动作”的样本。这个逻辑彻底打消了我的顾虑:一个batch只对应一次梯度下降,既不会出现参数更新“打架”的情况,还能兼顾训练效率与梯度稳定性——相比单样本随机梯度下降(SGD),它的梯度更平滑,训练波动更小;1. 把包含64个样本的batch喂入模型,针对每个样本,计算“预测噪声”与“真实噪声”的MSE损失,再通过反向传播得到64组独立的参数梯度;

2026-01-16 00:38:12 272

原创 人类认知与行为的本质:事实、自我与文化的异化

摘要:“相信自己”是一个不可回避的事实,所有决定最终只能由个体自身执行。文化制造的“应该”概念是心理问题的根源,导致人们误以为可以不相信自己。成功与失败仅是阶段性事件,真正的失败仅在生命终结时才能判定。风险是获取知识的方式,而文化通过虚拟目标控制个体,将其异化为傀儡。语言作为临时工具限制认知并传播谬误。愚蠢现象源于外部灌输的目标与自我认知的冲突。从纯粹事实角度审视行为,才能分辨文化扭曲与真实认知。

2025-12-24 23:22:57 457

原创 AI在工程调试中的能力边界_问题以及本质探讨

它能帮你跑得更快,但方向盘必须握在人类手里。认清这个边界,不是降低对AI的期待,而是找到真正高效的协作方式。当我们把“筛查问题、动态对齐目标”留给人类,把“快速试错、方案生成”交给AI时,复杂系统的调试效率才能真正实现跃升。未来的Agent系统或许能通过自动运行测试、调用工具来模拟部分闭环,但核心目标的涌现性判断,依然离不开人的介入。工具再强大,也只是工具。真正决定结果的,永远是使用工具的人如何理解自己的需求,并持续把这种理解清晰地传递下去。

2025-12-23 14:26:32 999

原创 为什么你成为不了

然而,人们常常将学习扩展到更宏大的目标:成为某种人——成功的创业者、卓越的艺术家、富足的生活者。成功的结果——清晰的目标、正确的路径、持续的执行——皆源于这个无人计划的整体。甚至,连“知道该追求什么”这一步,已属罕见的天赋——多数人连目标的正确性都无法辨识,更遑论通往它的全路径。但成为“优秀画家”或“有钱人”,意味着嵌入一套特定的存在方式——从每日作息到人际关系,从机遇的识别到内在的驱动力。真正的解放,不在于加倍努力学习技能,而在于认清这一界限,并追问:那个向往的“结果”,究竟是谁的默认赋值?

2025-12-23 13:58:01 326

原创 应试脚本:谁在运行我的身体

信徒从小浸润其中,会真心感到这个体系是宇宙的真相,会为遵守教义而自豪,会因违背而恐惧,会把救赎或升天当作人生最重要、最积极的目标。他梦想的,不是源于自身深处的梦想,而是别人——社会、父母、集体——预设好的梦想。又如某些神话传说,比如那些描绘古老神祇与宇宙恐怖的体系:它们构造了一个充满不可知力量的世界,细节丰富、逻辑自洽,让接触者产生深刻的惊悚与敬畏,甚至影响现实中的行为与梦魇。它更接近于一种集体编织的宏大故事系统——一套共享的信念、价值、规范和目标,由一代代人传承、强化,最终被视为理所当然的“现实”。

2025-12-18 21:01:32 224

原创 关于目标、技能、杠杆、教育体系与科研之路的完整思考

真正重要的事情——技能、长期积累、方向选择、认知模型、技术能力——却是那些不会有人催你、不会立刻让你痛苦、却能在未来十年彻底决定命运的事。> 目标 = 你对世界的理解 + 你对自己的理解 + 你对可掌控资源的理解。> 这套教育系统训练出来的不是有能力的人,而是心理疾病化的行为模式。> 我开始不再是系统的受训者,而是主动构建自己的人生结构的人。我现在做的事情,就是把语言重新定义,构建自己的概念体系。真正能带来增长的,是那些“我不知道自己不知道”的部分。八、真正的成长,是记住目的、不被“虚假的成就感”迷惑。

2025-12-05 23:04:39 606

原创 大学四年最值钱的只有一件事:系统能力

大学所有的事情——竞赛、科研、实习、绩点——本质都是在训练“系统能力”(项目能力)。> 实习是大学中你能接触到的最大系统,是唯一能训练“真实社会机器”的机会。> 让你进入更强平台、更强实验室、更强团队的“资格证”。——为什么竞赛、科研、实习、绩点其实是同一种东西?大学的全部意义,就是让你不断升级你的“系统能力”。五、最没用的是盲目努力,最有用的是“让系统变大”4)绩点:不是实力,是“进入更大系统的权限”这条路上,竞赛、科研、实习不再是“选择题”,大学不是学知识的地方,是学 调系统 的地方。

2025-11-26 23:46:03 314

原创 学历贬值的解读-知识的贬值和项目杠杆的升值

在中国,学历体系之所以“被深深相信”,原因比我们想象得复杂得多。> 学历 = 掌握了中国最缺、最贵、最能推动国家前进的东西。> 中国有极深厚的文化传统,但没有现代意义上的科学体系。一、学历系统不是天生的,它本来就是一个“过渡性的补丁”知识依旧重要,但它从“核心生产力”变成了“基础设施”。知识从“象牙塔里的贵重矿产”变成“随便取的水龙头”。七、对普通人来说,最重要的不是学历,而是“系统权限”知识被技术普及以后,它的价值下降不是最关键的。这比学历、比考试、比背理论,都更现实也更残酷。

2025-11-26 23:21:38 411

原创 一个真实 Gazebo + MoveIt + AprilTag 视觉伺服完整踩坑指南(双臂机器人)

改完 launch 文件 → 加上 camera_frame → 确保节点真的在跑 → Tag TF 立刻出现 → 位置变成 0.42m → 规划一次成功 → 机械臂精准戳中 Tag 上方 10cm。正因为我在代码里写了详细的 RCLCPP_INFO 打印 tag 位置 + 距离检查,才第一时间发现“位置 1 米多”明显不对,从而锁定是坐标变换问题。2. 数据表现:能 echo 到对应话题(/image_raw、/camera_info、/depth/image_rect_raw 等)

2025-11-18 21:41:26 301 2

原创 时代的节奏感

个人计算机的普及、互联网的崛起、移动互联网的爆发、AI的成熟——每一波都带来全新的可能性。和他们聊过的人常说,这些人身上有种难以言表的"感觉",一种对时代的敏锐嗅觉。在这个变化加速的时代,节奏感或许是最值得培养的元能力——它不能保证你成功,但能让你在正确的时刻,站在正确的位置上,做好正确的准备。这些看似"不务正业"的经历,实际上都是在积累一种珍贵的手感——对技术的理解,对用户需求的洞察,对产品打造的感觉。好的节奏感最终带来的是清晰的定位:你知道自己在时代中的位置,也知道该往哪个方向努力。

2025-09-11 10:56:42 419

原创 2025年全国大学生电子设计大赛E题视觉部分开源

2025年全国大学生电子设计大赛E题视觉部分开源代码包含四个核心模块:系统依赖与全局配置、串口通信模块、追踪控制模块和图像处理模块。系统配置部分定义了摄像头参数、PID控制参数和硬件接口初始化。串口通信模块实现了舵机角度控制与状态读取功能。追踪控制模块采用改进的PID算法,包含积分分离和输出平滑处理,针对X/Y轴采用不同控制参数。图像处理模块初始化摄像头和显示屏,并包含A4纸检测功能(代码截断)。整个系统通过视觉识别控制舵机追踪目标,硬件接口包括按键、激光器和UART通信。

2025-08-03 21:36:46 1237

原创 电子设计大赛战略思考

电子设计大赛参赛策略:组3队以上联合备赛,共享资源和试错经验,避免重复踩坑。建议器件冗余、提前实战、善用B站资源、保持心态稳定。熬夜低效,接受硬件重启常态,坚持完成即可取得好成绩。

2025-08-03 14:42:48 211

原创 2025电赛E题比赛过程的记录

2025年电赛E题参赛记录:首日凭借精准的器件选型(步进电机、360度舵机等)快速完成小车搭建,团队分工明确。次日遭遇视觉识别瓶颈,通过借鉴优化算法解决黑框识别问题。第三天发现PID控制致命错误——输出值与舵机角度1:1映射导致失控,经30小时调试后通过系数调整解决。最后24小时连续遭遇硬件灾难:两块K230开发板烧毁,备用板通信协议异常,所有应急方案均告失败。尽管核心功能已实现(1秒内完成基础题),最终因硬件问题未能提交完整作品。这段经历凸显了硬件冗余准备、协议兼容性测试的重要性,以及在极限压力下的技术应

2025-08-03 14:39:24 1191 1

原创 电赛备赛的一些思考

电赛备赛关键要点 团队选择:优先选择情绪稳定、负责任的队友,避免因情绪波动影响进度;同时注重队员的动手能力和问题解决能力。 AI工具应用:提前熟悉AI编程工具(如Cursor),优化提示词以提高嵌入式代码适配性,善用AI生成调试代码,提升开发效率。 规划与决策:明确时间节点和任务分工,果断选择硬件方案,承担决策责任。 硬件选型:推荐K230相机(Maxi Cam版本生态更友好),注意不同厂商的代码差异。 心态调整:避免死磕问题,及时寻求外部帮助,保持高效学习节奏。 核心:团队、工具、规划、硬件、心态缺一不可

2025-08-03 14:17:52 618 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除