BZOJ2705: [SDOI2012]Longge的问题

给定一个整数N,你需要求出 gcd(i,N)(1<=i<=N)

不难想到(连我这个SB都想到了),最后的答案一定和 Σd|nd(dn) 有关系,所以考虑这个关系。显然我们希望一个数只被计算一次,那么就要考虑到底有几个数和n的gcd等于d。有一个很常用的转换就是同时将n和那些数除以d,问题转化成了有几个数和n/d互质,那么就是phi(n/d)了。这是我会做的为数不多的数论题了吧。
所以时间复杂度就是 O(n0.5n0.5)=O(n)

#include<cstdio>
#define ll long long
ll n,ans;
int m;
ll phi(ll x) {
    ll t=x;
    for(ll i=2;i * i<=x;i++)
        if(x%i==0) {
            t=t/i*(i-1);
            while(x%i==0)x/=i;
        }
    if(x>1)t=t/x*(x-1);
    return t;
}
int main() {
    scanf("%lld",&n);
    for(int i = 1; i * i <= n; ++ i)
        if(n%i==0) {
            ans+=(ll)i*phi(n/i);
            if(i*i<n)ans+=(ll)(n/i)*phi(i);
        }
    printf("%lld",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值