组合数学_第1章_排列与组合

第1章 排列与组合

1.1 排列与组合

定义:设A={ a 1 a_1 a1, a 2 a_2 a2, a 3 a_3 a3,… a n a_n an}是 n n n不同元素的集合, m m m满足 0 ≤ m ≤ n 0≤m≤n 0mn,任取A中个(不重复的)元素,按次序排列,称为从 n n n个中取 m m m个的**(无重)排列**,用 P n m P_n^m Pnm P ( n , m ) P(n,m) P(n,m)表示。当 m = m= m=n时,称为全排列。一般不说可重即无重
P ( n , m ) = n ( n − 1 ) ⋅ ⋅ ⋅ ( n − m + 1 ) = n ! ( n − m ) ! P(n,m)=n(n-1)···(n-m+1)=\frac{n!}{(n-m)!} P(n,m)=n(n1)⋅⋅⋅(nm+1)=(nm)!n!
定义:当从 n n n个元素中取出 m m m个而不考虑它的顺序时,称为从 n n n个中取 r r r个的组合。用 C n m C_n^m Cnm C ( n , m ) C(n,m) C(n,m)表示。

若在每一种组合的基础上,再将盒子标号区别,且对盒子进行排列,便得到 n n n r r r的排列,所以有 P ( n , m ) = C ( n , m ) ⋅ n ! P(n,m)=C(n,m) \cdot n! P(n,m)=C(n,m)n!

例题:试求由{1,3,5,7}组成的数字不重复出现的整数的总和?

:这样的整数可以是1位数、2位数、3位数、4位数,其数目为 P 4 1 + P 4 2 + P 4 3 + P 4 4 = 4 + 12 + 24 + 24 = 64 P_4^1+P_4^2+P_4^3+P_4^4=4+12+24+24=64 P41+P42+P43+P44=4+12+24+24=64,即求这64个数的和。统计各自在个位、十位、百位、千位上数值的总和,设它们的总和分别为 S 1 S_1 S1 S 2 S_2 S2 S 3 S_3 S3 S 4 S_4 S4,则问题所求的和 S = S 1 + 10 S 2 + 100 S 3 + 1000 S 4 S=S_1+10S_2+100S_3+1000S_4 S=S1+10S2+100S3+1000S4

(1) S 1 S_1 S1的计算

一位数中个位数之和为 ( 1 + 3 + 5 + 7 ) P 3 0 = 16 (1+3+5+7)P_3^0=16 (1+3+5+7)P30=16

两位数中个位数之和为 ( 1 + 3 + 5 + 7 ) P 3 1 = 48 (1+3+5+7)P_3^1=48 (1+3+5+7)P31=48(1在个位,十位有 P 3 1 P_3^1 P31种选择,3、5、7在个位同样如此)

三位数中个位数之和为 ( 1 + 3 + 5 + 7 ) P 3 2 = 96 (1+3+5+7)P_3^2=96 (1+3+5+7)P32=96

四位数中个位数之和为 ( 1 + 3 + 5 + 7 ) P 3 3 = 96 (1+3+5+7)P_3^3=96 (1+3+5+7)P33=96

S 1 = ( 1 + 3 + 5 + 7 ) ( P 3 0 + P 3 1 + P 3 2 + P 3 3 ) = ( 16 + 48 + 96 + 96 ) = 256 S_1=(1+3+5+7)(P_3^0+P_3^1+P_3^2+P_3^3)=(16+48+96+96)=256 S1=(1+3+5+7)(P30+P31+P32+P33)=(16+48+96+96)=256

(2) S 2 S_2 S2的计算,即计算在十位数的和

S 2 = ( 1 + 3 + 5 + 7 ) ( P 3 1 + P 3 2 + P 3 3 ) = 16 × 15 = 240 S_2=(1+3+5+7)(P_3^1+P_3^2+P_3^3)=16 \times 15=240 S2=(1+3+5+7)(P31+P32+P33)=16×15=240

(3) S 3 S_3 S3的计算

S 3 = ( 1 + 3 + 5 + 7 ) ( P 3 2 + P 3 3 ) = 16 × 12 = 192 S_3=(1+3+5+7)(P_3^2+P_3^3)=16 \times 12=192 S3=(1+3+5+7)(P32+P33)=16×12=192

(4) S 4 S_4 S4的计算

S 2 = ( 1 + 3 + 5 + 7 ) P 3 3 = 16 × 6 = 96 S_2=(1+3+5+7)P_3^3=16 \times 6=96 S2=(1+3+5+7)P33=16×6=96

S = 256 + 240 × 10 + 192 × 100 + 96 × 1000 = 117856 S=256+240 \times 10+192 \times 100 + 96 \times 1000=117856 S=256+240×10+192×100+96×1000=117856

1.2 加法法则与乘法法则

[加法法则] 设事件A有 m m m种产生方式,事件B有 n n n种产生方式,则事件A或B之一有 m + n m+n m+n种产生方式。

[乘法法则] 设事件A有 m m m种产生方式,事件B有 n n n种产生方式,则事件A与B有 m ⋅ n m \cdot n mn种产生方式。

1.3 一一对应

“一一对应”概念是一个在计数中极为基本的概念。一一对应既是单射又是满射。在组合计数时往往借助于一一对应实现模型转换。比如要对A集合计数,但直接计数有困难,于是可设法构造一易于计数的B,使得A与B一一对应。

例题:某保密装置须同时使用若干把不同的钥匙才能打开。现有7人,每人持若干把钥匙。须4人到场才能开锁。问:(1)至少有多少把不同的钥匙?(2)每人至少持几把钥匙?

:由题知,要保证任意3个人到场都开不了锁,任意4个人到场才能开锁。

(1)任意3个人缺的钥匙都不同,如果甲乙丙缺的钥匙和甲乙丁缺的钥匙一样,那么他们4个人就不能开门了。也就是说,任意3个人都会缺一把钥匙,且他们缺的钥匙不一样。故至少有 C 7 3 C_7^3 C73

(2)任意4个人都不缺钥匙,任意一人对于其他6人中的3人,都至少有一把不同的钥匙能配合着开门。即其他6人中的3人都缺一把钥匙,缺 C 6 3 C_6^3 C63把,需要第四个人至少有 C 6 3 C_6^3 C63把钥匙。故每人至少持 C 6 3 C_6^3 C63把钥匙。

1.4 多重排列

自由多重 M = { ∞ a 1 , ∞ a 2 , ⋯   , ∞ a n } \stackrel{}{ } \mathbf{M}=\left\{\infty a_1, \infty a_2, \cdots, \infty a_n\right\} M={a1,a2,,an}

受限多重 M = { k 1 a 1 , k 2 a 2 , ⋯   , k n a n } \mathbf{M}=\left\{\mathbf{k}_1 a_1, \mathbf{k}_2 a_2, \cdots, \mathbf{k}_n a_n\right\} M={k1a1,k2a2,,knan}

在自由情况下,从 n n n中取 m m m个作多重排列,排列数 n m n^m nm

在受限情况下, k 1 k_1 k1 a 1 a_1 a1 k 2 k_2 k2 a 2 a_2 a2,…, k m k_m km a m a_m am的排列数,设 k 1 + k 2 + . . . + k m = n k_1+k_2+...+k_m=n k1+k2+...+km=n,设此排列数为 P ( n ; k 1 , k 2 , . . . , k m ) P(n;k_1,k_2,...,k_m) P(n;k1,k2,...,km)
P ( n ; k 1 , k 2 , … , k m ) = n ! k 1 ! k 2 ! … k m ! = ( n k 1 k 2 … k m ) P\left(\mathbf{n}; \mathbf{k}_1, \mathbf{k}_2, \ldots, \mathbf{k}_{\mathrm{m}}\right)=\frac{\mathbf{n !}}{\mathbf{k}_{1} ! \mathbf{k}_{2} ! \ldots \mathbf{k}_{\mathrm{m}} !}=\left(\begin{array}{c}\mathbf{n} \\ \mathbf{k}_1 \mathbf{k}_2 \ldots \mathbf{k}_m\end{array}\right) P(n;k1,k2,,km)=k1!k2!km!n!=(nk1k2km)
这是一种元素重复的排列!

例题:用长度为 1 × 1 1\times1 1×1, 1 × 2 1\times2 1×2, 1 × 3 1 \times 3 1×3的方砖铺设 1 × 7 1 \times 7 1×7的模块,有几种方式?

:(1)用7块 1 × 1 1 \times 1 1×1的砖,有 1 1 1种方式。

(2)用5块 1 × 1 1 \times 1 1×1的砖,1块 1 × 2 1 \times 2 1×2的砖,有 6 ! 5 ! = 6 \frac{6!}{5!}=6 5!6!=6种方式

(3)用4块 1 × 1 1 \times 1 1×1的砖,1块 1 × 3 1 \times 3 1×3的砖,有 5 ! 4 ! = 5 \frac{5!}{4!}=5 4!5!=5种方式

(4)用3块 1 × 1 1 \times 1 1×1的砖,2块 1 × 2 1 \times 2 1×2的砖,有 5 ! 3 ! ⋅ 2 ! = 10 \frac{5!}{3! \cdot {2!}}=10 3!2!5!=10种方式

(5)用2块 1 × 1 1 \times 1 1×1的砖,1块 1 × 2 1 \times 2 1×2的砖,1块 1 × 3 1 \times 3 1×3的砖,有 4 ! 2 ! = 12 \frac {4!} {2!}=12 2!4!=12种方式

(6)用1块 1 × 1 1 \times 1 1×1的砖,3块 1 × 2 1 \times 2 1×2的砖,有 4 ! 3 ! = 4 \frac{4!}{3!}=4 3!4!=4种方式

(7)用1块 1 × 1 1 \times 1 1×1的砖,2块 1 × 3 1 \times 3 1×3的砖,有 3 ! 2 ! = 3 \frac{3!}{2!}=3 2!3!=3种方式

(8)用2块 1 × 2 1 \times 2 1×2的砖,1块 1 × 3 1 \times 3 1×3的砖,有 3 ! 2 ! = 3 \frac{3!}{2!}=3 2!3!=3种方式

总共有1+6+5+10+12+4+3+3=44种方式

延伸1:特定排列也会产生多重排列结果

例题:10男10女乘车出游,每车2男2女,几种方案?假设车辆无区别

:(1)多队分组? ( 10 ! ) 2 5 ! × 2 10 \frac{(10 !)^2}{5 ! \times 2^{10}} 5!×210(10!)2

(2)若有一对男女要求同车呢? ( 9 ! ) 2 4 ! × 2 8 \frac{(9 !)^2}{4 ! \times 2^8} 4!×28(9!)2

(3)若有两队男女要求同车呢?这要求同车的两队男女可以在一辆车上,也可以在两辆车上。如果在一辆车上,那么只需要将剩下的8男8女分配在四辆车上;如果不在一辆车上,那么需要从剩下的8男8女中选出2男2女与他们同车,然后再分配剩下的6男6女。 ( 8 ! ) 2 4 ! × 2 8 + ( P 8 2 ) 2 ( 6 ! ) 2 3 ! × 2 6 \frac{(8 !)^2}{4 ! \times 2^8}+\left(P_8^2\right)^2 \frac{(6 !)^2}{3 ! \times 2^6} 4!×28(8!)2+(P82)23!×26(6!)2

延伸2:多重排列与组合

多重排列既可以看作排列的拓展,也可以看作组合的拓展。

例题 2 n 2n 2n个物品两两配对(同一组之内两两配对,也就是分组)?分成两组配对呢?若是两组物品,每组 n n n个不同的物品,两两配对呢?

:(1)分为 n n n组,每组2个。“组”是没有区别的。 ( 2 n ! ) n ! × 2 n \frac{(2n !)}{n ! \times 2^{n}} n!×2n(2n!)

(2) ( 2 n ! ) 2 ! × ( n ! ) 2 \frac{(2n !)}{2 ! \times (n!)^{2}} 2!×(n!)2(2n!)

(3)记两组分别为A、B,A组的第一个物品和B组的物品配对有n种选择,A组的第二个物品和B组的物品配对有n-1种选择,…,以此类推。共有 n ! n! n!种方案。 n ! n! n!

1.5 圆周排列

定义:从 n n n个对象中取 m m m个沿一圆周的排列,用 Q n m Q_n^m Qnm Q ( n , m ) Q(n,m) Q(n,m)表示

Q n m Q_n^m Qnm P n m P_n^m Pnm的关系是 Q n m = P n m m Q_n^{m}=\frac {P_n^m} m Qnm=mPnm,特别地,有 Q n n = P n n n = ( n − 1 ) ! Q_n^{n}=\frac {P_n^n} n=(n-1)! Qnn=nPnn=(n1)!

image-20230216154532064

例题:主人夫妇邀请另外三对夫妇共进晚餐,围一圆桌均匀而坐。(1)随意入座。(2)男女相间入座。(3)男女相间入座,且每对夫妻都相邻。(4)男女相间入座,但每对夫妻不全相邻。(5)男女相间入座,但每对夫妻都不相邻。(6)男女相间入座,但主人夫妇不相邻。

:(1) Q 8 8 Q_8^8 Q88

(2) Q 4 4 × 4 × 3 × 2 × 1 Q_4^4 \times 4 \times 3 \times 2 \times 1 Q44×4×3×2×1

(3) Q 4 4 × 2 Q_4^4 \times 2 Q44×2

(4) Q 4 4 × 4 × 3 × 2 × 1 − Q 4 4 × 2 Q_4^4 \times 4 \times 3 \times 2 \times 1 - Q_4^4 \times 2 Q44×4×3×2×1Q44×2

(5) Q 4 4 × 2 Q_4^4 \times 2 Q44×2

(6) Q 4 4 × 2 × 3 × 2 × 1 Q_4^4 \times 2 \times 3 \times 2 \times 1 Q44×2×3×2×1

例题:5个红球,6个蓝球,7个黄球串成一个项链,多少种方案?假定同色球无区别。若取其中三个球串成一环,有几种方案?

18 ! 5 ! × 6 ! × 7 ! × 18 × 2 \frac {18!} {{5!} \times {6!} \times {7!} \times 18 \times 2} 5!×6!×7!×18×218!,除以2是因为项链的正反两面是相同的。3个相同颜色:3种;3个不同颜色:1种;3个两种颜色: P ( 3 , 2 ) P(3,2) P(3,2)(一种颜色两个球,一种颜色一个球),共 3 + 1 + P 3 2 3+1+P_3^2 3+1+P32种方案。

例题 n n n个人围着桌子均匀而坐,如果是正方形的桌子呢?如果是正 k k k边形呢?

:正方形的桌子,每边都是 n 4 \frac {n} {4} 4n人,每边都是全排列,有 P n n 4 \frac {P_n^n} {4} 4Pnn种方案。如果是正 k k k边形的桌子,有 P n n k \frac {P_n^n} {k} kPnn种方案。

1.6 多重组合

定义:多重组合是指从 A = { 1 , 2 , . . . , n } A=\{1,2,...,n\} A={1,2,...,n}中取 m m m个元素 { a 1 , a 2 , . . . , a m } \{a_1,a_2,...,a_m\} {a1,a2,...,am} a i ϵ A a_i\epsilon A aiϵA i = 1 , 2 , . . . , m i=1,2,...,m i=1,2,...,m,而且允许 a i = a j a_i=a_j ai=aj。用 C n m ‾ \overline{C_n^m} Cnm表示。

定理:从 n n n个不同元素中取 m m m个作允许重复的组合,其组合数为 C n + m − 1 m C_{n+m-1}^m Cn+m1m

注意:允许重复的组合的典型模型是 m m m个相同的球放进 n n n个不同的盒子里,每个盒子可多于一个球,也可空盒。而后一问题又可以转换为 m m m个相同的球与 n − 1 n-1 n1个相同的盒壁的排列的问题。

image-20230216194304690

易知所求计数为 ( n + m − 1 ) ! m ! ( n − 1 ) ! = C n + m − 1 m \frac {(n+m-1)!} {m!(n-1)!}=C_{n+m-1}^m m!(n1)!(n+m1)!=Cn+m1m

例题 ( x + y + z ) 4 (x+y+z)^4 (x+y+z)4有多少项?

:问题相当于4个无标志的球放入3个有标志 x x x, y y y, z z z的盒子,根据定理可知有 C ( 3 + 4 − 1 , 4 ) = C ( 6 , 4 ) = 15 C(3+4-1,4)=C(6,4)=15 C(3+41,4)=C(6,4)=15

定理:线性方程 x 1 + x 2 + . . . + x n = m x_1+x_2+...+x_n=m x1+x2+...+xn=m n n n m m m都是整数, n ≥ 1 n \ge 1 n1,则此方程的非负整数解的个数为: C n + m − 1 m C_{n+m-1}^{m} Cn+m1m,即为简单的整数拆分。

例题:(1)将1000000分解成xyz三个正因数的乘积,有几种方法?(2)将1000000分解成三个相同的正因数的乘积,有几种方法?(3)将1000000分解成三个正因数的乘积,其中恰有两个相同有几种方法?(4)将1000000分解成三个不同的正因数的乘积,有几种方法?

100000 = 2 6 ⋅ 5 6 , x = 2 x 1 5 x 2 , y = 2 y 1 5 y 2 , z = 2 z 1 5 z 2 100000=2^6 \cdot 5^6,x=2^{x_1}5^{x_2},y=2^{y_1}5^{y_2},z=2^{z_1}5^{z_2} 100000=2656x=2x15x2y=2y15y2z=2z15z2

(1) x 1 + y 1 + z 1 = 6 , x 2 + y 2 + z 2 = 6 , ( C 3 + 6 − 1 6 ) 2 = 2 8 2 = 784 x_1+y_1+z_1=6,x_2+y_2+z_2=6,(C_{3+6-1}^{6})^2=28^2=784 x1+y1+z1=6x2+y2+z2=6(C3+616)2=282=784

(2)1种

(3) 2 x 1 + z 1 = 6 , 2 x 2 + y 2 = 6 2x_1+z_1=6,2x_2+y_2=6 2x1+z1=62x2+y2=6

x 1 x_1 x1 y 1 = x 1 y_1=x_1 y1=x1 z 1 z_1 z1 x 2 x_2 x2 y 2 = x 2 y_2=x_2 y2=x2 y 2 y_2 y2
006006
114114
222222
330330

去掉两边都是2,2,2的情况,还剩 4 × 4 − 1 = 15 4 \times 4-1=15 4×41=15

(4) 784 − 1 − 15 3 ! = 123 \frac {784-1-15}{3!}=123 3!784115=123

例题:20本书放到5个书架上,可以有空架。(1)书有区别,书架有区别,不考虑书顺序。(2)书有区别,书架有区别。(3)书没区别,书架有区别。(4)书有区别,书架有区别,每个书架放4本,不考虑书的顺序。(5)书有区别,书架没区别,每个书架放4本,不考虑书的顺序。(6)书没区别,书架有区别,每个书架放4本。

:(1)因为不考虑书的顺序,所以任意一本书在5个书架上都可以随便放。 5 20 5^{20} 520

(2)相当于24本书做全排列,其中选4本做书架的隔板隔离成5个书架,隔板没有区别。 24 ! 4 ! \frac {24!}{4!} 4!24!

(3) C 5 + 20 − 1 20 = C 24 20 C_{5+20-1}^{20}=C_{24}^{20} C5+20120=C2420

(4) 20 ! ( 4 ! ) 5 \frac {20!} {(4!)^5} (4!)520!

(5) 20 ! 5 ! ( 4 ! ) 5 \frac {20!} {5!(4!)^5} 5!(4!)520!

(6) 1 1 1

定理:线性方程 x 1 + x 2 + . . . + x n = m x_1+x_2+...+x_n=m x1+x2+...+xn=m n n n m m m都是整数, n ≥ 1 n \ge 1 n1,若 x i ≥ 1 x_i \ge 1 xi1,则此方程的非负整数解的个数为: C n + m − n − 1 m − n = C m − 1 m − n = C m − 1 n − 1 C_{n+m-n-1}^{m-n}=C_{m-1}^{m-n}=C_{m-1}^{n-1} Cn+mn1mn=Cm1mn=Cm1n1。可以理解为 m m m个无区别的球放到 n n n个有区别的盒子里,每个盒子不允许空盒。

例题:将12个红球、1个蓝球和1个绿球分给4个人,每人至少分得1个球,多少种方案?

:先考虑分蓝球和绿球,当蓝球和绿球分别在两个人手中时,即 P 4 2 P_4^2 P42,再分剩下的12个红球, x 1 + x 2 + x 3 + x 4 = 12 , x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 1 , x 4 ≥ 1 x_1+x_2+x_3+x_4=12,x_1 \ge 0,x_2 \ge 0,x_3 \ge 1,x_4 \ge 1 x1+x2+x3+x4=12,x10,x20,x31,x41,再给 x 3 x_3 x3 x 4 x_4 x4各一个红球,问题转换为 x 1 + x 2 + x 3 + x 4 = 10 , x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 0 , x 4 ≥ 0 x_1+x_2+x_3+x_4=10,x_1 \ge 0,x_2 \ge 0,x_3 \ge 0,x_4 \ge 0 x1+x2+x3+x4=10,x10,x20,x30,x40,即 C 4 + 10 − 1 10 C_{4+10-1}^{10} C4+10110,此时有 P 4 2 ⋅ C 4 + 10 − 1 10 P_4^2 \cdot C_{4+10-1}^{10} P42C4+10110种方案,也可以理解为,将14个无区别的球给四个人,每人至少一个球,再选择四人中的两人,一人有蓝,一人有绿;同理可得,当蓝球和绿球再一个人手中时,即 4 4 4种,剩下12个红球 x 1 + x 2 + x 3 + x 4 = 9 , x 1 ≥ 0 , x 2 ≥ 0 , x 3 ≥ 0 , x 4 ≥ 0 x_1+x_2+x_3+x_4=9,x_1 \ge 0,x_2 \ge 0,x_3 \ge 0,x_4 \ge 0 x1+x2+x3+x4=9,x10,x20,x30,x40,即 C 4 + 9 − 1 9 C_{4+9-1}^{9} C4+919,此时有 4 ⋅ C 4 + 9 − 1 9 4 \cdot C_{4+9-1}^{9} 4C4+919种方案。综上,共有 P 4 2 ⋅ C 4 + 10 − 1 10 + 4 ⋅ C 4 + 9 − 1 9 = P 4 2 ⋅ C 13 10 + 4 C 12 9 P_4^2 \cdot C_{4+10-1}^{10}+4 \cdot C_{4+9-1}^{9}=P_4^2 \cdot C_{13}^{10}+4C_{12}^{9} P42C4+10110+4C4+919=P42C1310+4C129种方案。

定理:从 A = { 1 , 2 , . . . , n } A=\{1,2,...,n\} A={1,2,...,n}中取 m m m个作不相邻的组合,即不存在相邻两个数 j j j j + 1 j+1 j+1的组合,球盒模型为有区别的 n n n个球排成一行,从中取 m m m个不相邻的球,其组合数为 C n − r + 1 r C_{n-r+1}^{r} Cnr+1r

简单的整数有序拆分问题:(1)所谓简单是指整数拆分的每项基数都是1,即 5 = 3 × 1 + 2 × 1 5=3\times1+2\times1 5=3×1+2×1;(2)所谓有序是指拆分出的元素有顺序,即盒子有区别,5=2+3和5=3+2看作不一样。

1.7 组合意义

image-20230218163831798

简单格路问题:从(0, 0)点出发沿 x x x轴或 y y y轴的正方向每步走一个单位,最终走到(m, n)点,有多少条路径?
∣ ( 0 , 0 ) → ( m , n ) ∣ = ( m + n m ) |(0,0) \rightarrow(\mathrm{m}, \mathrm{n})|=\left(\begin{array}{c}\mathbf{m+n} \\ \mathbf{m}\end{array}\right) (0,0)(m,n)=(m+nm)
可以用来证明如下公式:
C ( n , r ) = C ( n − 1 , r − 1 ) + C ( n − 1 , r ) C(n,r)=C(n-1,r-1)+C(n-1,r) C(n,r)=C(n1,r1)+C(n1,r)

( n n ) + ( n + 1 n ) + ( n + 2 n ) + . . . + ( n + m n ) = ( n + m + 1 n + 1 ) \left(\begin{array}{c}\mathbf{n} \\ \mathbf{n}\end{array}\right)+ \left(\begin{array}{c}\mathbf{n+1} \\ \mathbf{n}\end{array}\right)+ \left(\begin{array}{c}\mathbf{n+2} \\ \mathbf{n}\end{array}\right)+ ...+ \left(\begin{array}{c}\mathbf{n+m} \\ \mathbf{n}\end{array}\right)= \left(\begin{array}{c}\mathbf{n+m+1} \\ \mathbf{n+1}\end{array}\right) (nn)+(n+1n)+(n+2n)+...+(n+mn)=(n+m+1n+1)

( n 0 ) + ( n 1 ) + ( n 2 ) + . . . + ( n n ) = 2 n \left(\begin{array}{c}\mathbf{n} \\ \mathbf{0}\end{array}\right)+ \left(\begin{array}{c}\mathbf{n} \\ \mathbf{1}\end{array}\right)+ \left(\begin{array}{c}\mathbf{n} \\ \mathbf{2}\end{array}\right)+ ...+ \left(\begin{array}{c}\mathbf{n} \\ \mathbf{n}\end{array}\right)= 2^n (n0)+(n1)+(n2)+...+(nn)=2n

( m + n m ) = ( m 0 ) ( n 0 ) + ( m 1 ) ( n 1 ) + . . . + ( m m ) ( n m ) \left(\begin{array}{c}\mathbf{m+n} \\ \mathbf{m}\end{array}\right)= \left(\begin{array}{c}\mathbf{m} \\ \mathbf{0}\end{array}\right) \left(\begin{array}{c}\mathbf{n} \\ \mathbf{0}\end{array}\right)+ \left(\begin{array}{c}\mathbf{m} \\ \mathbf{1}\end{array}\right) \left(\begin{array}{c}\mathbf{n} \\ \mathbf{1}\end{array}\right)+ ...+ \left(\begin{array}{c}\mathbf{m} \\ \mathbf{m}\end{array}\right) \left(\begin{array}{c}\mathbf{n} \\ \mathbf{m}\end{array}\right) (m+nm)=(m0)(n0)+(m1)(n1)+...+(mm)(nm)

例题:从(0,0)点到(m,n)点,其中 m < n m\lt n m<n,要求中间所经过的路径上的点(a,b)恒满足 a < b a\lt b a<b。问有多少种不同的路径?

:由题知,不接触“对角线” y = x y=x y=x,从(0,0)点的第一步必须到(0,1)点,而不是到(1,0)点。问题可转化为求从(0,1)点到(m,n)点满足要求的路径数。从(0,1)点到(m,n)点的格路,有的接触 y = x y=x y=x,有的不接触。对每一条接触 y = x y=x y=x的格路 S S S(实线),设最后一个接触点为 P k P_k Pk,做一条从(1,0)到(m,n)的格路(虚线),该格路从(1,0)到 P k P_k Pk的部分与 S S S关于 y = x y=x y=x的对称,余下的部分与 S S S重合。

image-20230218190105183

容易看出从(0,1)到(m,n)接触 y = x y=x y=x的格路与(1,0)到(m,n)的格路(必穿过 y = x y=x y=x)一一对应。

则所求的路径数=(0,1)到(m,n)的所有路径数-(1,0)到(m,n)的所有路径数。即 ( m + n − 1 m ) − ( m + n − 1 m − 1 ) \left(\begin{array}{c}\mathbf{m+n-1} \\ \mathbf{m}\end{array}\right)-\left(\begin{array}{c}\mathbf{m+n-1} \\ \mathbf{m-1}\end{array}\right) (m+n1m)(m+n1m1)

若条件改为可接触但不可穿过,则限制线要向下或向右移一格,即 y = x − 1 y=x-1 y=x1,(0,0)关于 y = x − 1 y=x-1 y=x1对称的点为(-1,-1)。所求格路数为 ( m + n m ) − ( m + n m − 1 ) \left(\begin{array}{c}\mathbf{m+n} \\ \mathbf{m}\end{array}\right)-\left(\begin{array}{c}\mathbf{m+n} \\ \mathbf{m-1}\end{array}\right) (m+nm)(m+nm1)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值