代码随想录算法训练营第37天|贪心算法part03|1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果

文章介绍了如何使用贪心算法解决三个不同的编程问题:1005题中的K次取反后最大化的数组和,134题的加油站问题,以及135题的分发糖果问题。通过代码和解析展示了如何通过贪心策略找到局部最优解进而达到全局最优解,强调了贪心算法在解决这些问题时的重要性。
摘要由CSDN通过智能技术生成

代码随想录算法训练营第37天|贪心算法part03|1005.K次取反后最大化的数组和、134. 加油站、135. 分发糖果

1005.K次取反后最大化的数组和

1005.K次取反后最大化的数组和

自己做

思路:

这道题自己做时没什么思路,就是硬做,最终提交几次也做出来了

代码:

python

class Solution(object):
    def largestSumAfterKNegations(self, nums, k):
        """
        :type nums: List[int]
        :type k: int
        :rtype: int
        """
        if len(nums) == 0:
            return 0
        if k == 0:
            return sum(nums)

        nums = sorted(nums)
        negative_count = 0
        for index, num in enumerate(nums):
            if index == 0 and num >= 0:
                if k % 2 == 0:
                    return sum(nums)
                if k % 2 == 1:
                    nums[0] = -nums[0]
                return sum(nums)
            if num < 0:
                negative_count += 1
                if k != 0:
                    nums[index] = -nums[index]
                    k -= 1
            if num >= 0:
                break     
        
        if k == 0:
            return sum(nums)
        if k > 0:
            if k % 2 == 0:
                return sum(nums)
            if k % 2 == 1:
                nums = sorted(nums)
                nums[0] = -nums[0]
                return sum(nums)

代码随想录

思路:

虽然这道题目大家做的时候,可能都不会去想什么贪心算法,一鼓作气,就AC了。

我这里其实是为了给大家展现出来 经常被大家忽略的贪心思路,这么一道简单题,就用了两次贪心!

那么本题的解题步骤为:

第一步:将数组按照绝对值大小从大到小排序,注意要按照绝对值的大小

第二步:从前向后遍历,遇到负数将其变为正数,同时K–

第三步:如果K还大于0,那么反复转变数值最小的元素,将K用完

第四步:求和

如果没有贪心的思考方式(局部最优,全局最优),很容易陷入贪心简单题凭感觉做,贪心难题直接不会做,其实这样就锻炼不了贪心的思考方式了。

代码:

python

class Solution:
    def largestSumAfterKNegations(self, A: List[int], K: int) -> int:
        A.sort(key=lambda x: abs(x), reverse=True)  # 第一步:按照绝对值降序排序数组A

        for i in range(len(A)):  # 第二步:执行K次取反操作
            if A[i] < 0 and K > 0:
                A[i] *= -1
                K -= 1

        if K % 2 == 1:  # 第三步:如果K还有剩余次数,将绝对值最小的元素取反
            A[-1] *= -1

        result = sum(A)  # 第四步:计算数组A的元素和
        return result

134. 加油站

134. 加油站

自己做

思路:

暴力求解,以每个加油站为起点,计算是否可以到达起始点

最终时间超时并提交时有几个用例没有过

代码:

python

没有通过

class Solution(object):
    def canCompleteCircuit(self, gas, cost):
        """
        :type gas: List[int]
        :type cost: List[int]
        :rtype: int
        """
        # 贪心:刚开始选择的加油站一定是可以加油最多,且到达下一个加油站花费油量最少
        oil = 0
        for index, gas_i in enumerate(gas):
            begin_gas = index
            end_gas = begin_gas + len(gas)
            while begin_gas != end_gas:
                #加油
                real_begin = begin_gas % len(gas)
                oil += gas[real_begin]

                # 去下一站
                if oil == 0:
                    break
                oil -= cost[real_begin]
                if oil >= 0:
                    begin_gas  = begin_gas+1
                else:
                    oil = 0
                    break

            if begin_gas == end_gas:
                return index
            else:
                continue
        
        return -1

                

代码随想录

思路:

思路1:暴力求解

代码:

python

提交leecode超时

class Solution(object):
    def canCompleteCircuit(self, gas, cost):
        """
        :type gas: List[int]
        :type cost: List[int]
        :rtype: int
        """
        # 暴力求解
        for index, gas_i in enumerate(gas):
            oil = gas[index] - cost[index]
            next_gas = (index+1)%len(gas)
            while oil > 0 and next_gas != index:
                oil += gas[next_gas]
                oil -= cost[next_gas]
                next_gas = (next_gas+1)%len(gas)
            
            if oil >= 0 and index == next_gas:
                return index
            
        return -1


思路2: 贪心算法

方法一

直接从全局进行贪心选择,情况如下:

情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的

情况二:rest[i] = gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。

情况三:如果累加的最小值是负数,汽车就要从非0节点出发,从后向前,看哪个节点能把这个负数填平,能把这个负数填平的节点就是出发节点。

代码:

class Solution(object):
    def canCompleteCircuit(self, gas, cost):
        """
        :type gas: List[int]
        :type cost: List[int]
        :rtype: int
        """
        curSum = 0  # 当前累计的剩余油量
        minFuel = float('inf')  # 从起点出发,油箱里的油量最小值
        
        for i in range(len(gas)):
            rest = gas[i] - cost[i]
            curSum += rest
            if curSum < minFuel:
                minFuel = curSum
        
        if curSum < 0:
            return -1  # 情况1:整个行程的总消耗大于总供给,无法完成一圈
        
        if minFuel >= 0:
            return 0  # 情况2:从起点出发到任何一个加油站时油箱的剩余油量都不会小于0,可以从起点出发完成一圈
        
        for i in range(len(gas) - 1, -1, -1):
            rest = gas[i] - cost[i]
            minFuel += rest
            if minFuel >= 0:
                return i  # 情况3:找到一个位置使得从该位置出发油箱的剩余油量不会小于0,返回该位置的索引
        
        return -1  # 无法完成一圈

其实我不认为这种方式是贪心算法,因为没有找出局部最优,而是直接从全局最优的角度上思考问题。

所以对于本解法是贪心,我持保留意见!

但不管怎么说,解法毕竟还是巧妙的,不用过于执着于其名字称呼。

方法二

思路:

首先如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。

每个加油站的剩余量rest[i]为gas[i] - cost[i]。

i从0开始累加rest[i],和记为curSum,一旦curSum小于零,说明[0, i]区间都不能作为起始位置,因为这个区间选择任何一个位置作为起点,到i这里都会断油,那么起始位置从i+1算起,再从0计算curSum。

在这里插入图片描述

那么为什么一旦[0,i] 区间和为负数,起始位置就可以是i+1呢,i+1后面就不会出现更大的负数?

如果出现更大的负数,就是更新i,那么起始位置又变成新的i+1了。

那有没有可能 [0,i] 区间 选某一个作为起点,累加到 i这里 curSum是不会小于零呢? 如图:

在这里插入图片描述

如果 curSum<0 说明 区间和1 + 区间和2 < 0, 那么 假设从上图中的位置开始计数curSum不会小于0的话,就是 区间和2>0。

区间和1 + 区间和2 < 0 同时 区间和2>0,只能说明区间和1 < 0, 那么就会从假设的箭头初就开始从新选择其实位置了,而没有从那里重新开始选择就说明不行。

那么局部最优:当前累加rest[i]的和curSum一旦小于0,起始位置至少要是i+1,因为从i之前开始一定不行。全局最优:找到可以跑一圈的起始位置。

局部最优可以推出全局最优,找不出反例,试试贪心!

代码:

class Solution:
    def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
        curSum = 0  # 当前累计的剩余油量
        totalSum = 0  # 总剩余油量
        start = 0  # 起始位置
        
        for i in range(len(gas)):
            curSum += gas[i] - cost[i]
            totalSum += gas[i] - cost[i]
            
            if curSum < 0:  # 当前累计剩余油量curSum小于0
                start = i + 1  # 起始位置更新为i+1
                curSum = 0  # curSum重新从0开始累计
        
        if totalSum < 0:
            return -1  # 总剩余油量totalSum小于0,说明无法环绕一圈
        return start

135. 分发糖果

135. 分发糖果

代码随想录

思想:

这道题目一定是要确定一边之后,再确定另一边,例如比较每一个孩子的左边,然后再比较右边,如果两边一起考虑一定会顾此失彼。

先确定右边评分大于左边的情况(也就是从前向后遍历)

此时局部最优:只要右边评分比左边大,右边的孩子就多一个糖果,全局最优:相邻的孩子中,评分高的右孩子获得比左边孩子更多的糖果

局部最优可以推出全局最优。

如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:

candyVec[i] = candyVec[i - 1] + 1

代码如下:

// 从前向后
for (int i = 1; i < ratings.size(); i++) {
    if (ratings[i] > ratings[i - 1]) candyVec[i] = candyVec[i - 1] + 1;
}

如图:

在这里插入图片描述

再确定左孩子大于右孩子的情况(从后向前遍历

遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?

因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。

如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。

如图:

在这里插入图片描述

所以确定左孩子大于右孩子的情况一定要从后向前遍历!

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。

那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

局部最优可以推出全局最优。

所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。

如图:

在这里插入图片描述

所以该过程代码如下:

// 从后向前
for (int i = ratings.size() - 2; i >= 0; i--) {
    if (ratings[i] > ratings[i + 1] ) {
        candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1);
    }
}

总结

这在leetcode上是一道困难的题目,其难点就在于贪心的策略,如果在考虑局部的时候想两边兼顾,就会顾此失彼。

那么本题我采用了两次贪心的策略:

一次是从左到右遍历,只比较右边孩子评分比左边大的情况。

一次是从右到左遍历,只比较左边孩子评分比右边大的情况。

这样从局部最优推出了全局最优,即:相邻的孩子中,评分高的孩子获得更多的糖果。

代码:

class Solution:
    def candy(self, ratings: List[int]) -> int:
        candyVec = [1] * len(ratings)
        
        # 从前向后遍历,处理右侧比左侧评分高的情况
        for i in range(1, len(ratings)):
            if ratings[i] > ratings[i - 1]:
                candyVec[i] = candyVec[i - 1] + 1
        
        # 从后向前遍历,处理左侧比右侧评分高的情况
        for i in range(len(ratings) - 2, -1, -1):
            if ratings[i] > ratings[i + 1]:
                candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1)
        
        # 统计结果
        result = sum(candyVec)
        return result

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值