智能决策支持系统

 智能决策支持系统(Intelligence Decision Supporting System,IDSS)

什么是智能决策支持系统

  智能决策支持系统是人工智能(AI,Artificial Intelligence)和DSS相结合,应用专家系统(ES,Expert System)技术,使DSS能够更充分地应用人类的知识,如关于决策问题的描述性知识,决策过程中的过程性知识,求解问题的推理性知识,通过逻辑推理来帮助解决复杂的决策问题的辅助决策系统。

  IDSS的概念最早由美国学者波恩切克(Bonczek)等人于80年代提出,它的功能是,既能处理定量问题,又能处理定性问题。 IDSS的核心思想是将AI与其它相关科学成果相结合,使DSS具有人工智能。

智能决策支持系统的结构

  较完整与典型的DSS结构是在传统三库DSS的基础上增设知识库与推理机,在人机对话子系统加入自然语言处理系统 (LS),与四库之间插人问题处理系统(PSS)而构成的四库系统结构。

   1、智能人机接口

  四库系统的智能人机接口接受用自然语言或接近自然语言的方式表达的决策问题及决策目标,这较大程度地改变了人机界面的性能。

   2、问题处理系统

  问题处理系统处于DSS的中心位置,是联系人与机器及所存储的求解资源的桥梁,主要由问题分析器与问题求解器两部分组成。

  1)自然语言处理系统:转换产生的问题描述由问题分析器判断问题的结构化程度,对结构化问题选择或构造模型,采用传统的模型计算求解;对半结构化或非结构化问题则由规则模型与推理机制来求解。

  2)问题处理系统:是IDSS中最活跃的部件,它既要识别与分析问题,设计求解方案,还要为问题求解调用四库中的数据、模型、方法及知识等资源,对半结构化或非结构化问题还要触发推理机作推理或新知识的推求。

   3、知识库子系统和推理机

  知识库子系统的组成可分为三部分:知识库管理系统、知识库及推理机。

  1)知识库管理系统。功能主要有两个:一是回答对知识库知识增、删、改等知识维护的请求;二是回答决策过程中间题分析与判断所需知识的请求。

  2)知识库。知识库是知识库子系统的核心。

  知识库中存储的:是那些既不能用数据表示,也不能用模型方法描述的专家知识和经验,也即是决策专家的决策知识和经验知识,同时也包括一些特定问题领域的专门知识。

  知识库中的知识表示:是为描述世界所作的一组约定,是知识的符号化过程。对于同一知识,可有不同的知识表示形式,知识的表示形式直接影响推理方式,并在很大程度上决定着一个系统的能力和通用性,是知识库系统研究的一个重要课题。

  知识库包含事实库和规则库两部分。例如:事实库中存放了“任务A是紧急订货”、“任务B是出口任务”那样的事实。规则库中存放着“IF任务i是紧急订货,and任务i是出口任务,THEN任务i按最优先安排计划”、“IF任务i是紧急订货,THEN任务i按优先安排计划”那样的规则。

  3)推理机

  推理:是指从已知事实推出新事实 (结论)的过程。

  推理机:是一组程序,它针对用户问题去处理知识库 (规则和事实)。

  推理原理如下:

  若事实M为真,且有一规则“TF M THEN N”存在,则N为真。

  因此,如果事实“任务A是紧急订货”为真,且有一规则“IF任务i是紧急订货THEN任务i按优先安排计划”存在,则任务A就应优先安排计划。

智能决策支持系统的特点

  1、基于成熟的技术,容易构造出实用系统。

  2、充分利用了各层次的信息资源。

  3、基于规则的表达方式,使用户易于掌握使用。

  4、具有很强的模块化特性,并且模块重用性好,系统的开发成本低。

  5、系统的各部分组合灵活,可实现强大功能,并且易于维护。

  6、系统可迅速采用先进的支撑技术,如AI技术等。

智能决策支持系统的运行效率

  由于在IDSS的运行过程中,各模块要反复调用上层的桥梁,比起直接采用低层调用的方式,运行效率要低。但是考虑到IDSS只是在高层管理者作重大决策时才运行,其运行频率与其他信息系统相比要低得多,况且每次运行的环境条件差异很大,所以牺牲部分的运传效率以换取系统维护的效率是完全值得的。

同名图书

  基本资料

  作译者: 黄梯云编

  ISBN号: 7-5053-6348-4/TP.3435

  出版日期: 2001-01

  丛书名: 软件系统工程丛书

  字数:409.6千字

  页码:249

  开本:16开

  内容简介

  “智能决策支持系统”一书在介绍智能决策支持系统有关概念、结构和功能的基础上,将专家系统的IDSS、人工神经元网络的IDSS、机器学习和遗传算法等引入IDSS的理论和方法中,探讨了基于面向对象的IDSS和基于知识的模型生成等内容。作为作者在该领域多项研究成果的总结,本书内容丰富,阐述系统严谨,就许多新技术提出了值得借鉴的的解决途径,具有较高的理论价值和实际价值。

  该书作为高等学校信息系统和管理专业、计算机应用专业用书,也可供计算机应用软件开发人员等作为参考书。

   图书目录

  第1章 决策支持系统和智能决策支持系统

  1.1 决策支持系统和决策科学

  1.2 决策支持系统的基本模式和分类

  1.3 决策支持系统的组成

  1.4 智能决策支持系统概述

  第2章 决策支持系统的基本体系结构

  2.1 决策支持系统的两类基本结构

  2.2 决策支持系统中模型库系统的结构

  2.3 模型库的内容及分类

  2.4 传统决策支持系统中模型在计算机内的存储方式

  2.5 模型库管理系统

  2.6 决策支持系统中数据库的组成和数据析取问题

  2.7 决策支持系统中的人机对话系统

  2.8 一个专用决策支持系统的设计与实现

  2.9 交互式语句型存储模型管理系统设计

  第3章 智能决策支持系统的模型系统

  3.1 智能决策支持系统中模型系统的功能

  3.2 智能决策支持系统中的模型表示方法

  3.3 智能决策支持系统的模型管理系统

  3.4 模型操纵与模型表示之间的关系

  3.5 一个具有模型自动选择功能的决策支持系统的设计方案

  第4章 基于面向对象方法的模型管理

  4.1 面向对象方法的发展及其对模型管理的支持

  4.2 模型类的定义和复合

  4.3 模型例化、模型结构和模型事例

  第5章 人工神经网络与智能决策支持系统

  5.1 人工神经网络的发展

  5.2 多层前向神经网络的结构和反向传播算法

  5.3 神经网络在管理中的应用

  5.4 基于神经网络的智能决策支持系统的模型自动选择

  5.5 基于神经网络的趋势外推预测模型结构的选择

  5.6 一种具有模型自动选择功能的模型管理系统

  5.7 神经网络和专家系统的集成

  第6章 机器学习与智能决策支持系统

  6.1 机器学习及其发展

  6.2 归纳学习的理论

  6.3 基于机器学习的智能决策支持系统的体系结构

  6.4 基于机器学习的智能决策支持系统的多属性知识库和知识表示系统

  6.5 基于机器学习的智能决策支持系统的归纳学习

  6.6 基于机器学习的智能决策支持系统的控制策略

  6.7 一个基于机器学习的智能决策支持系统的设计与实现

  第7章 基于自然语言理解的模型自动选择

  7.1 自然语言理解及其关键技术

  7.2 基于自然语言理解的模型自动选择理论

  7.3 基于自然语言理解的模型选择方法

  第8章 遗传算法与智能决策支持系统

  8.1 遗传算法及其管理应用

  8.2 基于遗传算法的模型结构选择

  8.3 基于遗传算法的模型实例确定

  8.4 一个基于遗传算法的模型自动选择实例

  第9章 基于知识的模型自动生成

  9.1 产生式推理模型的定义

  9.2 专家系统推理模型与管理模型的连接

  9.3 模型选择专家系统的知识表示

  9.4 一个基于类的建模支持系统的实现

  参考文献

  序言/前言

  智能决策支持系统是将人工智能技术引入决策支持系统而形成的一种新型信息系统。它是以信息技术为手段,应用管理科学、计算机科学及有关学科的理论和方法,针对半结构化和非结构化的决策问题,通过提供背景材料、协助明确问题、修改完善模型、列举可能方案、进行分析比较等方式,为管理者做出正确决策提供帮助的智能型人机交互式信息系统。在席卷全球的信息革命浪潮中,智能决策支持系统作为管理领域信息系统的一个重要方面已经成为计算机管理应用研究的热点和主要的发展方向‘实践表明,只有当决策支持系统具有较丰富的知识和较强的知识处理能力时,才能向决策者提供更为有效的决策支持。研制、建设和利用智能决策支持系统对于增强知识开发和利用的能力,改善决策的智能化水平,提高系统的应用效果具有重要的理论意义和实际价值。

  本书作者长期从事决策支持系统和管理信息系统的理论研究和应用实践,先后完成了大庆测井公司经营决策支持系统、微型决策支持系统生成器、油田测井管理及其决策支持系统、管理模型类库及其管理系统和中国长江三峡总公司所属管理信息系统等许多研究项目。有关研究曾获得四项国家自然科学基金资助。作者发表了与此有关的六十余篇学术论文。本书正是对这些研究成果的总结。

  全书系统地评述了智能决策支持系统的发展,研究了与发展智能决策支持系统有关的各种新技术,提出了存在的问题和可能的解决途径。

  全书共九章,分别为:决策支持系统和智能决策支持系统、决策支持系统的基本体系结构、智能决策支持系统的模型系统、基于面向对象方法的模型管理、人工神经网络与智能决策支持系统、机器学习与智能决策支持系统、基于自然语言理解的模型自动选择、遗传算法与智能决策支持系统和基于知识的模型自动生成。

  本书研究工作得到国家自然科学基金项目资助,这些项目是:

  微型经营决策支持系统生成系统研究(7897O027);

  油田测井管理及其决策支持系统研究(79170026);

  基于人工神经元网络的模型自动选择理论和方法研究(79270041);

  管理模型类库及其管理系统研究(79670023)。

  参加这些研究工作并发表有关论文的有黄梯云、李一军、李明星、刘晶珠、冯玉强、崔宝灵、刘建国、张玉红、卢涛、汤军其、韩世欣、周宽久、吴菲、杨璐、柴守平、孙华梅、祁巍、陈洁、樊玉臣、邹屹和王庆超等同志。

  本书的出版得到了哈尔滨工业大学研究成果专著出版基金的资助,在此深表感谢。

  智能决策支持系统是一个新的研究领域,内容丰富,需要进一步研究的问题很多,希望本书出版能起到抛砖引玉的作用。书中错误和不当之处在所难免,敬请读者指正。

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试