PVT(Pyramid Vision Transformer)算法整理

整体架构

整个“金字塔”架构分为4个stage,每个stage内的基础结构是相似的,即:

  1. Patch Embedding:目的在于将信息分块,降低单张图的图片大小,但会增加数据的深度
  2. Transformer Encoder:目的在于计算图片的attention value,由于深度变大了,计算复杂度会变大,所以在这里作者使用了Special Reduction来减小计算复杂度

具体模块

Patch Embedding

Patch Embedding部分与ViT中对与图片的分块操作是一样的,即:

  1. 将原图切成总数为 p i × p i p_i\times p_i pi×pi的patches

具体操作:
使用卷积操作, k e r n a l _ s i z e = H p i , s t r i d e = H p i \mathrm{kernal\_size}=\frac{H}{p_i},\mathrm{stride}=\frac{H}{p_i} kernal_size=piHstride=piH

  1. 将每个patch内的数据拉平,然后进行LayerNorm,此时每个patch内的数据大小为 H i − 1 W i − 1 p i 2 × C i \frac{H_{i-1}W_{i-1}}{p_i^2}\times C_i pi2Hi1Wi1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值