(一)时间复杂度为O(n²)的算法
1.冒泡排序
两两比较选择,每一次比较将大的往后移。
空间复杂度O(1),稳定的排序。
public static void bubbleSort(int[] nums) {
for (int i = nums.length - 1; i >= 0; --i) {
for (int j = 0; j <= i - 1; ++j) {
if (nums[j] >= nums[j + 1]) swap(nums, j, j + 1);
}
}
}
2.选择排序
每次选出最大值放在数组末尾。
空间复杂度O(1),不稳定的排序。
public static void selectSort(int[] nums) {
for (int i = 0; i < nums.length; ++i) {
for (int j = i; j <nums.length; j++) {
if (nums[j] < nums[i]) swap(nums,i,j);
}
}
}
3.插入排序
将数组中未排序的新的一个数插入到已排序好的数组中 ,在最坏情况(倒序)下时间复杂度为O(n²),在数组已经比较有序时有较好的表现。空间复杂度O(1),稳定的排序。
public static void insertSort(int[] nums) {
for (int i = 0; i < nums.length; i++) {
for (int j = i - 1; j >= 0; j--) {
if (nums[j + 1] < nums[j]) swap(nums, j + 1, j);
else break;
}
}
}
(二)时间复杂度为O(NlogN)的算法
1.归并排序
将左右两边排序好的数组归并到一个数组。运用递归的思想,自下而上,最终将整个数组排序。需要构建辅助数组,空间复杂度O(N)。是一种稳定的排序。
public static void mergeSort(int[] nums, int left, int right) {
if (left == right) return;
int mid = left + ((right - left) >> 1);
mergeSort(nums, left, mid);
mergeSort(nums, mid + 1, right);
nums = merge(nums, left, mid, right);
}
public static int[] merge(int[] nums, int left, int mid, int right) {
int[] help = new int[right - left + 1];
int p1 = left, p2 = mid + 1;
int i = 0;
while (p1 <= mid && p2 <= right) {
help[i++] = nums[p1] <= nums[p2] ? nums[p1++] : nums[p2++];
}
while (p1 <= mid) {
help[i++] = nums[p1++];
}
while (p2 <= right) {
help[i++] = nums[p2++];
}
for(i=0;i<help.length;++i){
nums[left+i]=help[i];
}
return nums;
}
2.快速排序
以数组中随机某一个值作划分。空间复杂度O(logN),是一种不稳定的算法。
public static void quickSort(int[] nums, int left, int right) {
if (left < right) {
//随机取一个数作为划分值
swap(nums, left+(int) (Math.random() * (right-left+1)), right);
int[] res = partition(nums, left, right);
quickSort(nums, left, res[0]-1);
quickSort(nums, res[1] + 1, right);
}
}
public static int[] partition(int[] arr, int left, int right) {
//low为小于区右边界,p2为大于区左边界,index指针
int low = left - 1, high = right;
int index = left;
while (index < high) {
if (arr[index] < arr[right]) {
swap(arr, index++, ++low);
} else if (arr[index] > arr[right]) {
swap(arr, index, --high);
} else {
index++;
}
}
swap(arr, right, high);
return new int[]{low + 1, high};
}
3.堆排序
借用完全二叉树建立堆,升序建立大根堆,降序建立小根堆。
空间复杂度为O(1),不需要建立额外空间,在数组内部交换即可完成,但是不稳定。
public static void heapSort(int[] nums) {
if (nums.length < 2) return;
for (int i = 0; i < nums.length; ++i) {
heapInsert(nums, i);
}
int heapSize = nums.length;
swap(nums, 0, --heapSize);
while (heapSize > 0) {
heapify(nums, 0, heapSize);
swap(nums, 0, --heapSize);
}
}
public static void heapInsert(int[] nums, int index) {
while (nums[index] > nums[(index - 1) / 2]) {
swap(nums, index, (index - 1) / 2);
index = (index - 1) / 2;
}
}
public static void heapify(int[] arr, int index, int heapSize) {
int left = 2 * index + 1;
while (left < heapSize) {
//如果有右孩子,定义一个指针指向其中较大的孩子
int largest = left + 1 < heapSize && arr[left] < arr[left + 1] ? left + 1 : left;
//将当前数与孩子中较大的进行比较
largest = arr[index] > arr[largest] ? index : largest;
//相等说明当前数大于孩子,已经是大根堆了,结束循环
if (largest == index) break;
swap(arr, largest, index);
index = largest;
left = 2 * index + 1;
}
}
这篇博客详细介绍了几种常见的排序算法,包括冒泡排序、选择排序和插入排序,它们的时间复杂度为O(n²)。此外,还探讨了时间复杂度为O(NlogN)的归并排序、快速排序和堆排序。这些排序算法在不同的场景下有不同的性能表现,对于理解算法的时间和空间复杂度有着重要意义。

被折叠的 条评论
为什么被折叠?



